How do I understand YOLO gride cell - bounding-box

"Our system divides the input image into an S * S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object."
This is from YOLO paper, the input images are divided into S*S grid,which means that the output of conv is the size of S * S, right?
If so, how do these small cells(7 * 7) connect to the original region of input image? I know how conv works, but how the bounding boxes do regression?

The ground truth in original size will be "resized" to SxS, in this case 7x7 in Yolov1 or 13x13 in Yolov2
I think this Yolo implementation could be useful for you to understand how yolo built:
https://github.com/1991viet/Yolo-pytorch

Related

Calculate histogram of gradients (HOG) of a fixed length regardless of image size

I'm training a HOG + SVM model, and my training data comes in various sizes and aspect ratios. The SVM model can't be trained on variable sized lists, so I'm looking to calculate a histogram of gradients that is the same length regardless of image size.
Is there a clever way to do that? Or is it better to resize the images or pad them?
What people usually do in such case is one of the follow two things:
Resize all images (or image patches) to a fixed size and extract the HOG features from those.
Use the "Bag of Words/Features" method and don't resize the images.
The first method 1. is quite simple but it has some problems which method 2. tries to solve.
First, think of what a hog descriptor does. It divides an image into cells of a fixed length, calculates the gradients cell-wise to generate cell-wise histograms(based on voting). At the end, you'll have a concatenated histogram of all the cells and that's your descriptor.
So there is a problem with it, because the object (that you want to detect) has to cover the images in similar manner. Otherwise your descriptor would look different depending on the location of the object inside the image.
Method 2. works as follows:
Extract the HOG features from both positive and negative images in your training set.
Use an clustering algorithm like k-means to define a fixed amount of k centroids.
For each image in your dataset, extract the HOG features and compare them element-wise to the centroids to create a frequency histogram.
Use the frequency histograms for the training of your SVM and use it for the classification phase. This way, the location doesn't matter and you'll always have a fixed sized of inputs. You'll also benefit from the reduction of dimensions.
You can normalize the images to a given target shape using cv2.resize(), divide image into number of blocks you want and calculate the histogram of orientations along with the magnitudes. Below is a simple implementation of the same.
img = cv2.imread(filename,0)
img = cv2.resize(img,(16,16)) #resize the image
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) #horizontal gradinets
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) # vertical gradients
mag, ang = cv2.cartToPolar(gx, gy)
bin_n = 16 # Number of bins
# quantizing binvalues in (0-16)
bins = np.int32(bin_n*ang/(2*np.pi))
# divide to 4 sub-squares
s = 8 #block size
bin_cells = bins[:s,:s],bins[s:,:s],bins[:s,s:],bins[s:,s:]
mag_cells = mag[:s,:s], mag[s:,:s], mag[:s,s:], mag[s:,s:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells,mag_cells)]
hist = np.hstack(hists) #histogram feature data to be fed to SVM model
Hope that helps!

Should I gray scale the image?

I'm categorizing 30 types of clothes from the image using R-CNN Object Detection Library from tensorflow : https://github.com/tensorflow/models/tree/master/research/object_detection
Does color matter when we collect images for training and testing?
If I put only purple and blue shirts, I guess it won't recognize red shirts?
Should I gray scale all images to detect the types of clothes? :)
Yes, colour does matter. The underlying visual feature extraction is based on a convolutional neural network, pre-trained to perform image recognition on colour images in the ImageNet dataset.
The R-CNN repository instructions on bringing in your own dataset asks for RGB images.
Dataset Requirements
For every example in your dataset, you should have the following information:
An RGB image for the dataset encoded as jpeg or png.
A list of bounding boxes for the image. Each bounding box should contain:
A bounding box coordinates (with origin in top left corner) defined by 4 floating point numbers [ymin, xmin, ymax, xmax]. Note that we store the normalized coordinates (x / width, y / height) in the TFRecord dataset.
The class of the object in the bounding box.

Fast RCNN: Applying ROIs to feature map

In Fast RCNN, I understand that you first apply a CNN to the image in order to get a feature map. Then, you use the ROIs generated an external object detector (selectivesearch) to get the bounding box of potential objects of interests. However, I don't understand how you get the features from the feature map associated with the region of interest.
Ex. Apply Selectivesearch and I get a list of (x,y,width,height). Then, I apply a CNN(inceptionv3) to get a 2048x1 feature vector(from pool3 layer). How do I get the regions of interest from my feature vector of the image or am I interpreting this method incorrectly
Thanks for your help!
Then you use CNN for classification task, your network has two part:
Feature generator. Part which by image with size WI x HI and CI channels generates feature map with size WF x HF and CF channels. The relation between image sizes and feature map size depends of structure your NN (for example, on amount of pooling layers and stride of them). Also we can multiply strides of all layers in this part of CNN and get Step value (we will use it later)
Classificator. Part which solve the task of classification vectors with WF*HF*CF components into classes.
Now if you have image with size W x H, and W > WI and H > HI, you can apply first part of your network (because in this part only convolution and pooling layers) and get feature map with WFB > WF and HFB > HF.
Every windows with size WF x HF in this feature map corresponds to the window WI x HI on source image.
Rectangle (0, 0, WF, HF) on the feature map corresponds to the rectangle (0, 0, WI, HI) on the image. Rectangle (1, 0, WF+1, HF) corresponds to the rectangle (Step, 0, WI + Step, HI) on the image etc.
Therefore if you have coordinates of ROI in the feature map you can return to the ROI on the source image.

What is Depth of a convolutional neural network?

I was taking a look at Convolutional Neural Network from CS231n Convolutional Neural Networks for Visual Recognition. In Convolutional Neural Network, the neurons are arranged in 3 dimensions(height, width, depth). I am having trouble with the depth of the CNN. I can't visualize what it is.
In the link they said The CONV layer's parameters consist of a set of learnable filters. Every filter is small spatially (along width and height), but extends through the full depth of the input volume.
For example loook at this picture. Sorry if the image is too crappy.
I can grasp the idea that we take a small area off the image, then compare it with the "Filters". So the filters will be collection of small images? Also they said We will connect each neuron to only a local region of the input volume. The spatial extent of this connectivity is a hyperparameter called the receptive field of the neuron. So is the receptive field has the same dimension as the filters? Also what will be the depth here? And what do we signify using the depth of a CNN?
So, my question mainly is, if i take an image having dimension of [32*32*3] (Lets say i have 50000 of these images, making the dataset [50000*32*32*3]), what shall i choose as its depth and what would it mean by the depth. Also what will be the dimension of the filters?
Also it will be much helpful if anyone can provide some link that gives some intuition on this.
EDIT:
So in one part of the tutorial(Real-world example part), it says The Krizhevsky et al. architecture that won the ImageNet challenge in 2012 accepted images of size [227x227x3]. On the first Convolutional Layer, it used neurons with receptive field size F=11, stride S=4 and no zero padding P=0. Since (227 - 11)/4 + 1 = 55, and since the Conv layer had a depth of K=96, the Conv layer output volume had size [55x55x96].
Here we see the depth is 96. So is depth something that i choose arbitrarily? or something i compute? Also in the example above(Krizhevsky et al) they had 96 depths. So what does it mean by its 96 depths? Also the tutorial stated Every filter is small spatially (along width and height), but extends through the full depth of the input volume.
So that means the depth will be like this? If so then can i assume Depth = Number of Filters?
In Deep Neural Networks the depth refers to how deep the network is but in this context, the depth is used for visual recognition and it translates to the 3rd dimension of an image.
In this case you have an image, and the size of this input is 32x32x3 which is (width, height, depth). The neural network should be able to learn based on this parameters as depth translates to the different channels of the training images.
UPDATE:
In each layer of your CNN it learns regularities about training images. In the very first layers, the regularities are curves and edges, then when you go deeper along the layers you start learning higher levels of regularities such as colors, shapes, objects etc. This is the basic idea, but there lots of technical details. Before going any further give this a shot : http://www.datarobot.com/blog/a-primer-on-deep-learning/
UPDATE 2:
Have a look at the first figure in the link you provided. It says 'In this example, the red input layer holds the image, so its width and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels).' It means that a ConvNet neuron transforms the input image by arranging its neurons in three dimeonsion.
As an answer to your question, depth corresponds to the different color channels of an image.
Moreover, about the filter depth. The tutorial states this.
Every filter is small spatially (along width and height), but extends through the full depth of the input volume.
Which basically means that a filter is a smaller part of an image that moves around the depth of the image in order to learn the regularities in the image.
UPDATE 3:
For the real world example I just browsed the original paper and it says this : The first convolutional layer filters the 224×224×3 input image with 96 kernels of size 11×11×3 with a stride of 4 pixels.
In the tutorial it refers the depth as the channel, but in real world you can design whatever dimension you like. After all that is your design
The tutorial aims to give you a glimpse of how ConvNets work in theory, but if I design a ConvNet nobody can stop me proposing one with a different depth.
Does this make any sense?
Depth of CONV layer is number of filters it is using.
Depth of a filter is equal to depth of image it is using as input.
For Example: Let's say you are using an image of 227*227*3.
Now suppose you are using a filter of size of 11*11(spatial size).
This 11*11 square will be slided along whole image to produce a single 2 dimensional array as a response. But in order to do so, it must cover every aspect inside of 11*11 area. Therefore depth of filter will be depth of image = 3.
Now suppose we have 96 such filter each producing different response. This will be depth of Convolutional layer. It is simply number of filters used.
I'm not sure why this is skimped over so heavily. I also had trouble understanding it at first, and very few outside of Andrej Karpathy (thanks d00d) have explained it. Although, in his writeup (http://cs231n.github.io/convolutional-networks/), he calculates the depth of the output volume using a different example than in the animation.
Start by reading the section titled 'Numpy examples'
Here, we go through iteratively.
In this case we have an 11x11x4. (why we start with 4 is kind of peculiar, as it would be easier to grasp with a depth of 3)
Really pay attention to this line:
A depth column (or a fibre) at position (x,y) would be the activations
X[x,y,:].
A depth slice, or equivalently an activation map at depth d
would be the activations X[:,:,d].
V[0,0,0] = np.sum(X[:5,:5,:] * W0) + b0
V is your output volume. The zero'th index v[0] is your column - in this case V[0] = 0 this is the first column in your output volume.
V[1] = 0 this is the first row in your output volume. V[3]= 0 is the depth. This is the first output layer.
Now, here's where people get confused (at least I did). The input depth has absolutely nothing to do with your output depth. The input depth only has control of the filter depth. W in Andrej's example.
Aside: A lot of people wonder why 3 is the standard input depth. For color input images, this will always be 3 for plain ole images.
np.sum(X[:5,:5,:] * W0) + b0 (convolution 1)
Here, we are calculating elementwise between a weight vector W0 which is 5x5x4. 5x5 is an arbitrary choice. 4 is the depth since we need to match our input depth. The weight vector is your filter, kernel, receptive field or whatever obfuscated name people decide to call it down the road.
if you come at this from a non python background, that's maybe why there's more confusion since array slicing notation is non-intuitive. The calculation is a dot product of your first convolution size (5x5x4) of your image with the weight vector. The output is a single scalar value which takes the position of your first filter output matrix. Imagine a 4 x 4 matrix representing the sum product of each of these convolution operations across the entire input. Now stack them for each filter. That shall give you your output volume. In Andrej's writeup, he starts moving along the x axis. The y axis remains the same.
Here's an example of what V[:,:,0] would look like in terms of convolutions. Remember here, the third value of our index is the depth of your output layer
[result of convolution 1, result of convolution 2, ..., ...]
[..., ..., ..., ..., ...]
[..., ..., ..., ..., ...]
[..., ..., ..., result of convolution n]
The animation is best for understanding this, but Andrej decided to swap it with an example that doesn't match the calculation above.
This took me a while. Partly because numpy doesn't index the way Andrej does in his example, at least it didn't I played around with it. Also, there's some assumptions that the sum product operation is clear. That's the key to understand how your output layer is created, what each value represents and what the depth is.
Hopefully that helps!
Since the input volume when we are doing an image classification problem is N x N x 3. At the beginning it is not difficult to imagine what the depth will mean - just the number of channels - Red, Green, Blue. Ok, so the meaning for the first layer is clear. But what about the next ones? Here is how I try to visualize the idea.
On each layer we apply a set of filters which convolve around the input. Lets imagine that currently we are at the first layer and we convolve around a volume V of size N x N x 3. As #Semih Yagcioglu mentioned at the very beginning we are looking for some rough features: curves, edges etc... Lets say we apply N filters of equal size (3x3) with stride 1. Then each of these filters is looking for a different curve or edge while convolving around V. Of course, the filter has the same depth, we want to supply the whole information not just the grayscale representation.
Now, if M filters will look for M different curves or edges. And each of these filters will produce a feature map consisting of scalars (the meaning of the scalar is the filter saying: The probability of having this curve here is X%). When we convolve with the same filter around the Volume we obtain this map of scalars telling us where where exactly we saw the curve.
Then comes feature map stacking. Imagine stacking as the following thing. We have information about where each filter detected a certain curve. Nice, then when we stack them we obtain information about what curves / edges are available at each small part of our input volume. And this is the output of our first convolutional layer.
It is easy to grasp the idea behind non-linearity when taking into account 3. When we apply the ReLU function on some feature map, we say: Remove all negative probabilities for curves or edges at this location. And this certainly makes sense.
Then the input for the next layer will be a Volume $V_1$ carrying info about different curves and edges at different spatial locations (Remember: Each layer Carries info about 1 curve or edge).
This means that the next layer will be able to extract information about more sophisticated shapes by combining these curves and edges. To combine them, again, the filters should have the same depth as the input volume.
From time to time we apply Pooling. The meaning is exactly to shrink the volume. Since when we use strides = 1, we usually look at a pixel (neuron) too many times for the same feature.
Hope this makes sense. Look at the amazing graphs provided by the famous CS231 course to check how exactly the probability for each feature at a certain location is computed.
In simple terms, it can explain as below,
Let's say you have 10 filters where each filter is the size of 5x5x3. What does this mean? the depth of this layer is 10 which is equal to the number of filters. Size of each filter can be defined as we want e.g., 5x5x3 in this case where 3 is the depth of the previous layer. To be precise, depth of each filer in the next layer should be 10 ( nxnx10) where n can be defined as you want like 5 or something else. Hope will make everything clear.
The first thing you need to note is
receptive field of a neuron is 3D
ie If the receptive field is 5x5 the neuron will be connected to 5x5x(input depth) number of points. So whatever be your input depth, one layer of neurons will only develop 1 layer of output.
Now, the next thing to note is
depth of output layer = depth of conv. layer
ie The output volume is independent of the input volume, and it only depends on the number filters(depth). This should be pretty obvious from the previous point.
Note that the number of filters (depth of the cnn layer) is a hyper parameter. You can take it whatever you want, independent of image depth. Each filter has it's own set of weights enabling it to learn a different feature on the same local region covered by the filter.
The depth of the network is the number of layers in the network. In the Krizhevsky paper, the depth is 9 layers (modulo a fencepost issue with how layers are counted?).
If you are referring to the depth of the filter (I came to this question searching for that) then this diagram of LeNet is illustrating
Source http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
How to create such a filter; Well in python like https://github.com/alexcpn/cnn_in_python/blob/main/main.py#L19-L27
Which will give you a list of numpy arrays and length of the list is the depth
Example in the code above,but adding a depth of 3 for color (RGB), the below is the network. The first Convolutional layer is a filter of shape (5,5,3) and depth 6
Input (R,G,B)= [32.32.3] *(5.5.3)*6 == [28.28.6] * (5.5.6)*1 = [24.24.1] * (5.5.1)*16 = [20.20.16] *
FC layer 1 (20, 120, 16) * FC layer 2 (120, 1) * FC layer 3 (20, 10) * Softmax (10,) =(10,1) = Output
In Pytorch
np.set_printoptions(formatter={'float': lambda x: "{0:0.2f}".format(x)})
# Generate a random image
image_size = 32
image_depth = 3
image = np.random.rand(image_size, image_size)
# to mimic RGB channel
image = np.stack([image,image,image], axis=image_depth-1) # 0 to 2
image = np.moveaxis(image, [2, 0], [0, 2])
print("Image Shape=",image.shape)
input_tensor = torch.from_numpy(image)
m = nn.Conv2d(in_channels=3,out_channels=6,kernel_size=5,stride=1)
output = m(input_tensor.float())
print("Output Shape=",output.shape)
Image Shape= (3, 32, 32)
Output Shape= torch.Size([6, 28, 28])

Why the LeNet5 uses 32×32 image as input?

I know that the handwritten digit images in the mnist dataset are 28×28,but why the input in LeNet5 is 32×32?
Your question is answered in the original paper:
The convolution step always takes a smaller input than the feature maps of the previous layer (and this holds true for the 1st layer - the input - as well):
Layer C1 is a convolutional layer with 6 feature maps.
Each unit in each feature map is connected to a 5x5 neighborhood in the input. The size of the feature maps is 28x28
which prevents connection from the input from falling off
the boundary.
This means that using a 5x5 neighborhood on a 32x32 input, you'll get 6 features maps of size 28x28 because there's pixels you won't use at the image boundary (you will always have a remainder with these numbers).
Of course they could have an exception for the first layer. The reason they're still using 32x32 images is:
The input is a 32x32 pixel image. This is significantly larger
than the largest character in the database (at most 20x20
pixels centered in a 28x28 field). The reason is that it is
desirable that potential distinctive features such as stroke
end-points or corner can appear in the center of the receptive field of the highest-level feature detectors.

Resources