Fast RCNN: Applying ROIs to feature map - machine-learning

In Fast RCNN, I understand that you first apply a CNN to the image in order to get a feature map. Then, you use the ROIs generated an external object detector (selectivesearch) to get the bounding box of potential objects of interests. However, I don't understand how you get the features from the feature map associated with the region of interest.
Ex. Apply Selectivesearch and I get a list of (x,y,width,height). Then, I apply a CNN(inceptionv3) to get a 2048x1 feature vector(from pool3 layer). How do I get the regions of interest from my feature vector of the image or am I interpreting this method incorrectly
Thanks for your help!

Then you use CNN for classification task, your network has two part:
Feature generator. Part which by image with size WI x HI and CI channels generates feature map with size WF x HF and CF channels. The relation between image sizes and feature map size depends of structure your NN (for example, on amount of pooling layers and stride of them). Also we can multiply strides of all layers in this part of CNN and get Step value (we will use it later)
Classificator. Part which solve the task of classification vectors with WF*HF*CF components into classes.
Now if you have image with size W x H, and W > WI and H > HI, you can apply first part of your network (because in this part only convolution and pooling layers) and get feature map with WFB > WF and HFB > HF.
Every windows with size WF x HF in this feature map corresponds to the window WI x HI on source image.
Rectangle (0, 0, WF, HF) on the feature map corresponds to the rectangle (0, 0, WI, HI) on the image. Rectangle (1, 0, WF+1, HF) corresponds to the rectangle (Step, 0, WI + Step, HI) on the image etc.
Therefore if you have coordinates of ROI in the feature map you can return to the ROI on the source image.

Related

How do I quantify the similarity between spatial patterns

Problem Formulation
Suppose I have several 10000*10000 grids (can be transformed to 10000*10000 grayscale images. I would regard image and grid as the same below), and at each grid-point, there is some value (in my case it's the number of copies of a specific gene expressed at that pixel location, note that the locations are same for every grid). What I want is to quantify the similarity between two 2D spatial point-patterns of this kind (i.e., the spatial expression patterns of two distinct genes), and rank all pairs of genes in a "most similar" to "most dissimilar" manner. Note that it is not the spatial pattern in terms of the absolute value of expression level that I care about, rather, it's the relative pattern that I care about. As a result, I might need to utilize some correlation instead of distance metrics when comparing corresponding pixels.
The easiest method might be directly viewing all pixels together as a vector and calculate some correlation metric between the two vectors. However, this does not take the spatial information into account. Those genes that I am most interested in have spatial patterns, i.e., clustering and autocorrelation effects their expression pattern (though their "cluster" might take a very thin shape rather than sticking together, e.g., genes specific to the skin cells), which means usually the image would have several peak local regions, while expression levels at other pixels would be extremely low (near 0).
Possible Directions
I am not exactly sure if I should (1) consider applying image similarity comparison algorithms from image processing that take local structure similarity into account (e.g., SSIM, SIFT, as outlined in Simple and fast method to compare images for similarity), or (2) consider applying spatial similarity comparison algorithms from spatial statistics in GIS (there are some papers about this, but I am not sure if there are some algorithms dealing with simple point data rather than the normal region data with shape (in a more GIS-sense way, I need to find an algorithm dealing with raster data rather than polygon data)), or (3) consider directly applying statistical methods that deal with discrete 2D distributions, which I think might be a bit crude (seems to disregard the regional clustering/autocorrelation effects, ~ Tobler's First Law of Geography).
For direction (1), I am thinking about a simple method, that is, first find some "peak" regions in the two images respectively and regard their union as ROIs, and then compare those ROIs in the two images specifically in a simple pixel-by-pixel way (regard them together as a vector), but I am not sure if I can replace the distance metrics with correlation metrics, and am a bit worried that many methods of similarity comparison in image processing might not work well when the two images are dissimilar. For direction (2), I think this direction might be more appropriate because this problem is indeed related to spatial statistics, but I do not yet know where to start in GIS. I guess direction (3) is somewhat masked by (2), so I might not consider it here.
Sample
Sample image: (There are some issues w/ my own data, so here I borrowed an image from SpatialLIBD http://research.libd.org/spatialLIBD/reference/sce_image_grid_gene.html)
Let's say the value at each pixel is discretely valued between 0 and 10 (could be scaled to [0,1] if needed). The shapes of tissues in the right and left subfigure are a bit different, but in my case they are exactly the same.
PS: There is one might-be-serious problem regarding spatial statistics though. The expression of certain marker genes of a specific cell type might not be clustered in a bulk, but in the shape of a thin layer or irregularly. For example, if the grid is a section of the brain, then the high-expression peak region for cortex layer-specific genes (e.g., Ctip2 for layer V) might form a thin arc curved layer in the 10000*10000 grid.
UPDATE: I found a method belonging to the (3) direction called "optimal transport" problem that might be useful. Looks like it integrates locality information into the comparison of distribution. Would try to test this way (seems to be the easiest to code among all three directions?) tomorrow.
Any thoughts would be greatly appreciated!
In the absence of any sample image, I am assuming that your problem is similar to texture-pattern recognition.
We can start with Local Binary Patterns (2002), or LBPs for short. Unlike previous (1973) texture features that compute a global representation of texture based on the Gray Level Co-occurrence Matrix, LBPs instead compute a local representation of texture by comparing each pixel with its surrounding neighborhood of pixels. For each pixel in the image, we select a neighborhood of size r (to handle variable neighborhood sizes) surrounding the center pixel. A LBP value is then calculated for this center pixel and stored in the output 2D array with the same width and height as the input image. Then you can calculate a histogram of LBP codes (as final feature vector) and apply machine learning for classifications.
LBP implementations can be found in both the scikit-image and OpenCV but latter's implementation is strictly in the context of face recognition — the underlying LBP extractor is not exposed for raw LBP histogram computation. The scikit-image implementation of LBPs offer more control of the types of LBP histograms you want to generate. Furthermore, the scikit-image implementation also includes variants of LBPs that improve rotation and grayscale invariance.
Some starter code:
from skimage import feature
import numpy as np
from sklearn.svm import LinearSVC
from imutils import paths
import cv2
import os
class LocalBinaryPatterns:
def __init__(self, numPoints, radius):
# store the number of points and radius
self.numPoints = numPoints
self.radius = radius
def describe(self, image, eps=1e-7):
# compute the Local Binary Pattern representation
# of the image, and then use the LBP representation
# to build the histogram of patterns
lbp = feature.local_binary_pattern(image, self.numPoints,
self.radius, method="uniform")
(hist, _) = np.histogram(lbp.ravel(),
bins=np.arange(0, self.numPoints + 3),
range=(0, self.numPoints + 2))
# normalize the histogram
hist = hist.astype("float")
hist /= (hist.sum() + eps)
# return the histogram of Local Binary Patterns
return hist
# initialize the local binary patterns descriptor along with
# the data and label lists
desc = LocalBinaryPatterns(24, 8)
data = []
labels = []
# loop over the training images
for imagePath in paths.list_images(args["training"]):
# load the image, convert it to grayscale, and describe it
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
hist = desc.describe(gray)
# extract the label from the image path, then update the
# label and data lists
labels.append(imagePath.split(os.path.sep)[-2])
data.append(hist)
# train a Linear SVM on the data
model = LinearSVC(C=100.0, random_state=42)
model.fit(data, labels)
Once our Linear SVM is trained, we can use it to classify subsequent texture images:
# loop over the testing images
for imagePath in paths.list_images(args["testing"]):
# load the image, convert it to grayscale, describe it,
# and classify it
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
hist = desc.describe(gray)
prediction = model.predict(hist.reshape(1, -1))
# display the image and the prediction
cv2.putText(image, prediction[0], (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
1.0, (0, 0, 255), 3)
cv2.imshow("Image", image)
cv2.waitKey(0)
Have a look at this excellent tutorial for more details.
Ravi Kumar (2016) was able to extract more finely textured images by combining LBP with Gabor filters to filter the coefficients of LBP pattern

How to get Subpixel Disparities in AVDepthData Objects

I'm working on a swift app that should measure physical correct z-values of a person standing in front of a statically mounted iPhone 7+. Therefore, I am using AVDepthData objects that contain the depth maps coming from the Dual Camera System.
However, the resulting point clouds indicate that the depth maps do not have subpixel accuracy since the point clouds consist of slices along the z-direction and the distances of adjacent slices increase with increasing depth. This seems to be caused by the integer discretization.
Here are two files that visualize the problem:
Captured Depthmap, cropped Z-Values after 4.0m: DepthMap with Z-values in Legend
Textured Pointcloud, view from the side (90°): Pointcloud rendered from iPhone
According to Apple's documentation, I've already deactivated the temporal filtering and unwarped the images using the distortion coefficients from the lookup table, in order to have correct world coordinates.
Filtering depth data makes it more useful for applying visual effects to a companion image, but alters the data such that it may no longer be suitable for computer vision tasks. (In an unfiltered depth map, missing values are represented as NaN.)
Is there any way to retrieve depth maps that have subpixel accuracy in order to perform good measurements of a person standing in front of the camera?
Below you can find the python code I wrote to create the pointclouds offline, the method calculate_rectified_point was provided by Apple to remove lense distortion from the images.
for v in range(height):
for u in range(width):
r, g, b = rgb_texture[v, u]
z = depth_map[v, u]
if z <= 0:
continue
# Step 1: inverse the intrinsic parameters
x = (u - center[0]) / focal_lengths[0]
y = (v - center[1]) / focal_lengths[1]
# Step 2: remove the radial and tangential distortion
x_un, y_un = calculate_rectified_point((x, y), dist_coefficients, optical_center, (width, height))
# Step 3: inverse extrinsic parameters
x, y, z = extrinsic_matrix_inv.dot(np.array([x_un * z, y_un * z, z]))

Should I gray scale the image?

I'm categorizing 30 types of clothes from the image using R-CNN Object Detection Library from tensorflow : https://github.com/tensorflow/models/tree/master/research/object_detection
Does color matter when we collect images for training and testing?
If I put only purple and blue shirts, I guess it won't recognize red shirts?
Should I gray scale all images to detect the types of clothes? :)
Yes, colour does matter. The underlying visual feature extraction is based on a convolutional neural network, pre-trained to perform image recognition on colour images in the ImageNet dataset.
The R-CNN repository instructions on bringing in your own dataset asks for RGB images.
Dataset Requirements
For every example in your dataset, you should have the following information:
An RGB image for the dataset encoded as jpeg or png.
A list of bounding boxes for the image. Each bounding box should contain:
A bounding box coordinates (with origin in top left corner) defined by 4 floating point numbers [ymin, xmin, ymax, xmax]. Note that we store the normalized coordinates (x / width, y / height) in the TFRecord dataset.
The class of the object in the bounding box.

What is Depth of a convolutional neural network?

I was taking a look at Convolutional Neural Network from CS231n Convolutional Neural Networks for Visual Recognition. In Convolutional Neural Network, the neurons are arranged in 3 dimensions(height, width, depth). I am having trouble with the depth of the CNN. I can't visualize what it is.
In the link they said The CONV layer's parameters consist of a set of learnable filters. Every filter is small spatially (along width and height), but extends through the full depth of the input volume.
For example loook at this picture. Sorry if the image is too crappy.
I can grasp the idea that we take a small area off the image, then compare it with the "Filters". So the filters will be collection of small images? Also they said We will connect each neuron to only a local region of the input volume. The spatial extent of this connectivity is a hyperparameter called the receptive field of the neuron. So is the receptive field has the same dimension as the filters? Also what will be the depth here? And what do we signify using the depth of a CNN?
So, my question mainly is, if i take an image having dimension of [32*32*3] (Lets say i have 50000 of these images, making the dataset [50000*32*32*3]), what shall i choose as its depth and what would it mean by the depth. Also what will be the dimension of the filters?
Also it will be much helpful if anyone can provide some link that gives some intuition on this.
EDIT:
So in one part of the tutorial(Real-world example part), it says The Krizhevsky et al. architecture that won the ImageNet challenge in 2012 accepted images of size [227x227x3]. On the first Convolutional Layer, it used neurons with receptive field size F=11, stride S=4 and no zero padding P=0. Since (227 - 11)/4 + 1 = 55, and since the Conv layer had a depth of K=96, the Conv layer output volume had size [55x55x96].
Here we see the depth is 96. So is depth something that i choose arbitrarily? or something i compute? Also in the example above(Krizhevsky et al) they had 96 depths. So what does it mean by its 96 depths? Also the tutorial stated Every filter is small spatially (along width and height), but extends through the full depth of the input volume.
So that means the depth will be like this? If so then can i assume Depth = Number of Filters?
In Deep Neural Networks the depth refers to how deep the network is but in this context, the depth is used for visual recognition and it translates to the 3rd dimension of an image.
In this case you have an image, and the size of this input is 32x32x3 which is (width, height, depth). The neural network should be able to learn based on this parameters as depth translates to the different channels of the training images.
UPDATE:
In each layer of your CNN it learns regularities about training images. In the very first layers, the regularities are curves and edges, then when you go deeper along the layers you start learning higher levels of regularities such as colors, shapes, objects etc. This is the basic idea, but there lots of technical details. Before going any further give this a shot : http://www.datarobot.com/blog/a-primer-on-deep-learning/
UPDATE 2:
Have a look at the first figure in the link you provided. It says 'In this example, the red input layer holds the image, so its width and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels).' It means that a ConvNet neuron transforms the input image by arranging its neurons in three dimeonsion.
As an answer to your question, depth corresponds to the different color channels of an image.
Moreover, about the filter depth. The tutorial states this.
Every filter is small spatially (along width and height), but extends through the full depth of the input volume.
Which basically means that a filter is a smaller part of an image that moves around the depth of the image in order to learn the regularities in the image.
UPDATE 3:
For the real world example I just browsed the original paper and it says this : The first convolutional layer filters the 224×224×3 input image with 96 kernels of size 11×11×3 with a stride of 4 pixels.
In the tutorial it refers the depth as the channel, but in real world you can design whatever dimension you like. After all that is your design
The tutorial aims to give you a glimpse of how ConvNets work in theory, but if I design a ConvNet nobody can stop me proposing one with a different depth.
Does this make any sense?
Depth of CONV layer is number of filters it is using.
Depth of a filter is equal to depth of image it is using as input.
For Example: Let's say you are using an image of 227*227*3.
Now suppose you are using a filter of size of 11*11(spatial size).
This 11*11 square will be slided along whole image to produce a single 2 dimensional array as a response. But in order to do so, it must cover every aspect inside of 11*11 area. Therefore depth of filter will be depth of image = 3.
Now suppose we have 96 such filter each producing different response. This will be depth of Convolutional layer. It is simply number of filters used.
I'm not sure why this is skimped over so heavily. I also had trouble understanding it at first, and very few outside of Andrej Karpathy (thanks d00d) have explained it. Although, in his writeup (http://cs231n.github.io/convolutional-networks/), he calculates the depth of the output volume using a different example than in the animation.
Start by reading the section titled 'Numpy examples'
Here, we go through iteratively.
In this case we have an 11x11x4. (why we start with 4 is kind of peculiar, as it would be easier to grasp with a depth of 3)
Really pay attention to this line:
A depth column (or a fibre) at position (x,y) would be the activations
X[x,y,:].
A depth slice, or equivalently an activation map at depth d
would be the activations X[:,:,d].
V[0,0,0] = np.sum(X[:5,:5,:] * W0) + b0
V is your output volume. The zero'th index v[0] is your column - in this case V[0] = 0 this is the first column in your output volume.
V[1] = 0 this is the first row in your output volume. V[3]= 0 is the depth. This is the first output layer.
Now, here's where people get confused (at least I did). The input depth has absolutely nothing to do with your output depth. The input depth only has control of the filter depth. W in Andrej's example.
Aside: A lot of people wonder why 3 is the standard input depth. For color input images, this will always be 3 for plain ole images.
np.sum(X[:5,:5,:] * W0) + b0 (convolution 1)
Here, we are calculating elementwise between a weight vector W0 which is 5x5x4. 5x5 is an arbitrary choice. 4 is the depth since we need to match our input depth. The weight vector is your filter, kernel, receptive field or whatever obfuscated name people decide to call it down the road.
if you come at this from a non python background, that's maybe why there's more confusion since array slicing notation is non-intuitive. The calculation is a dot product of your first convolution size (5x5x4) of your image with the weight vector. The output is a single scalar value which takes the position of your first filter output matrix. Imagine a 4 x 4 matrix representing the sum product of each of these convolution operations across the entire input. Now stack them for each filter. That shall give you your output volume. In Andrej's writeup, he starts moving along the x axis. The y axis remains the same.
Here's an example of what V[:,:,0] would look like in terms of convolutions. Remember here, the third value of our index is the depth of your output layer
[result of convolution 1, result of convolution 2, ..., ...]
[..., ..., ..., ..., ...]
[..., ..., ..., ..., ...]
[..., ..., ..., result of convolution n]
The animation is best for understanding this, but Andrej decided to swap it with an example that doesn't match the calculation above.
This took me a while. Partly because numpy doesn't index the way Andrej does in his example, at least it didn't I played around with it. Also, there's some assumptions that the sum product operation is clear. That's the key to understand how your output layer is created, what each value represents and what the depth is.
Hopefully that helps!
Since the input volume when we are doing an image classification problem is N x N x 3. At the beginning it is not difficult to imagine what the depth will mean - just the number of channels - Red, Green, Blue. Ok, so the meaning for the first layer is clear. But what about the next ones? Here is how I try to visualize the idea.
On each layer we apply a set of filters which convolve around the input. Lets imagine that currently we are at the first layer and we convolve around a volume V of size N x N x 3. As #Semih Yagcioglu mentioned at the very beginning we are looking for some rough features: curves, edges etc... Lets say we apply N filters of equal size (3x3) with stride 1. Then each of these filters is looking for a different curve or edge while convolving around V. Of course, the filter has the same depth, we want to supply the whole information not just the grayscale representation.
Now, if M filters will look for M different curves or edges. And each of these filters will produce a feature map consisting of scalars (the meaning of the scalar is the filter saying: The probability of having this curve here is X%). When we convolve with the same filter around the Volume we obtain this map of scalars telling us where where exactly we saw the curve.
Then comes feature map stacking. Imagine stacking as the following thing. We have information about where each filter detected a certain curve. Nice, then when we stack them we obtain information about what curves / edges are available at each small part of our input volume. And this is the output of our first convolutional layer.
It is easy to grasp the idea behind non-linearity when taking into account 3. When we apply the ReLU function on some feature map, we say: Remove all negative probabilities for curves or edges at this location. And this certainly makes sense.
Then the input for the next layer will be a Volume $V_1$ carrying info about different curves and edges at different spatial locations (Remember: Each layer Carries info about 1 curve or edge).
This means that the next layer will be able to extract information about more sophisticated shapes by combining these curves and edges. To combine them, again, the filters should have the same depth as the input volume.
From time to time we apply Pooling. The meaning is exactly to shrink the volume. Since when we use strides = 1, we usually look at a pixel (neuron) too many times for the same feature.
Hope this makes sense. Look at the amazing graphs provided by the famous CS231 course to check how exactly the probability for each feature at a certain location is computed.
In simple terms, it can explain as below,
Let's say you have 10 filters where each filter is the size of 5x5x3. What does this mean? the depth of this layer is 10 which is equal to the number of filters. Size of each filter can be defined as we want e.g., 5x5x3 in this case where 3 is the depth of the previous layer. To be precise, depth of each filer in the next layer should be 10 ( nxnx10) where n can be defined as you want like 5 or something else. Hope will make everything clear.
The first thing you need to note is
receptive field of a neuron is 3D
ie If the receptive field is 5x5 the neuron will be connected to 5x5x(input depth) number of points. So whatever be your input depth, one layer of neurons will only develop 1 layer of output.
Now, the next thing to note is
depth of output layer = depth of conv. layer
ie The output volume is independent of the input volume, and it only depends on the number filters(depth). This should be pretty obvious from the previous point.
Note that the number of filters (depth of the cnn layer) is a hyper parameter. You can take it whatever you want, independent of image depth. Each filter has it's own set of weights enabling it to learn a different feature on the same local region covered by the filter.
The depth of the network is the number of layers in the network. In the Krizhevsky paper, the depth is 9 layers (modulo a fencepost issue with how layers are counted?).
If you are referring to the depth of the filter (I came to this question searching for that) then this diagram of LeNet is illustrating
Source http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
How to create such a filter; Well in python like https://github.com/alexcpn/cnn_in_python/blob/main/main.py#L19-L27
Which will give you a list of numpy arrays and length of the list is the depth
Example in the code above,but adding a depth of 3 for color (RGB), the below is the network. The first Convolutional layer is a filter of shape (5,5,3) and depth 6
Input (R,G,B)= [32.32.3] *(5.5.3)*6 == [28.28.6] * (5.5.6)*1 = [24.24.1] * (5.5.1)*16 = [20.20.16] *
FC layer 1 (20, 120, 16) * FC layer 2 (120, 1) * FC layer 3 (20, 10) * Softmax (10,) =(10,1) = Output
In Pytorch
np.set_printoptions(formatter={'float': lambda x: "{0:0.2f}".format(x)})
# Generate a random image
image_size = 32
image_depth = 3
image = np.random.rand(image_size, image_size)
# to mimic RGB channel
image = np.stack([image,image,image], axis=image_depth-1) # 0 to 2
image = np.moveaxis(image, [2, 0], [0, 2])
print("Image Shape=",image.shape)
input_tensor = torch.from_numpy(image)
m = nn.Conv2d(in_channels=3,out_channels=6,kernel_size=5,stride=1)
output = m(input_tensor.float())
print("Output Shape=",output.shape)
Image Shape= (3, 32, 32)
Output Shape= torch.Size([6, 28, 28])

SIFT matches and recognition?

I am developing an application where I am using SIFT + RANSAC and Homography to find an object (OpenCV C++,Java). The problem I am facing is that where there are many outliers RANSAC performs poorly.
For this reasons I would like to try what the author of SIFT said to be pretty good: voting.
I have read that we should vote in a 4 dimension feature space, where the 4 dimensions are:
Location [x, y] (someone says Traslation)
Scale
Orientation
While with opencv is easy to get the match scale and orientation with:
cv::Keypoints.octave
cv::Keypoints.angle
I am having hard time to understand how I can calculate the location.
I have found an interesting slide where with only one match we are able to draw a bounding box:
But I don't get how I could draw that bounding box with just one match. Any help?
You are looking for the largest set of matched features that fit a geometric transformation from image 1 to image 2. In this case, it is the similarity transformation, which has 4 parameters: translation (dx, dy), scale change ds, and rotation d_theta.
Let's say you have matched to features: f1 from image 1 and f2 from image 2. Let (x1,y1) be the location of f1 in image 1, let s1 be its scale, and let theta1 be it's orientation. Similarly you have (x2,y2), s2, and theta2 for f2.
The translation between two features is (dx,dy) = (x2-x1, y2-y1).
The scale change between two features is ds = s2 / s1.
The rotation between two features is d_theta = theta2 - theta1.
So, dx, dy, ds, and d_theta are the dimensions of your Hough space. Each bin corresponds to a similarity transformation.
Once you have performed Hough voting, and found the maximum bin, that bin gives you a transformation from image 1 to image 2. One thing you can do is take the bounding box of image 1 and transform it using that transformation: apply the corresponding translation, rotation and scaling to the corners of the image. Typically, you pack the parameters into a transformation matrix, and use homogeneous coordinates. This will give you the bounding box in image 2 corresponding to the object you've detected.
When using the Hough transform, you create a signature storing the displacement vectors of every feature from the template centroid (either (w/2,h/2) or with the help of central moments).
E.g. for 10 SIFT features found on the template, their relative positions according to template's centroid is a vector<{a,b}>. Now, let's search for this object in a query image: every SIFT feature found in the query image, matched with one of template's 10, casts a vote to its corresponding centroid.
votemap(feature.x - a*, feature.y - b*)+=1 where a,b corresponds to this particular feature vector.
If some of those features cast successfully at the same point (clustering is essential), you have found an object instance.
Signature and voting are reverse procedures. Let's assume V=(-20,-10). So during searching in the novel image, when the two matches are found, we detect their orientation and size and cast a respective vote. E.g. for the right box centroid will be V'=(+20*0.5*cos(-10),+10*0.5*sin(-10)) away from the SIFT feature because it is in half size and rotated by -10 degrees.
To complete Dima's , one needs to add that the 4D Hough space is quantized into a (possibly small) number of 4D boxes, where each box corresponds to the simiéarity given by its center.
Then, for each possible similarity obtained via a tentative matching of features, add 1 into the corresponding box (or cell) in the 4D space. The output similarity is given by the cell with the more votes.
In order to computethe transform from 1 match, just use Dima's formulas in his answer. For several pairs of matches, you may need to use some least squares fit.
Finally, the transform can be applied with the function cv::warpPerspective(), where the third line of the perspective matrix is set to [0,0,1].

Resources