Imbalanced dataset doesn't produce good 'Precision' or 'Recall' - machine-learning

The dataset is extremely imbalanced the positive results were only 10% approximately compared to negative results. Eg: (0 - 11401, 1- 1280).
I have tried
1. RandomForestClassifier with GridSearchCV - hyper parameter tuning.
2. Weighted RandomForest with class_weight="balanced"
3. Penalised SVC
4. UpSampling and DownSampling
Still I don't get good precision or recall in any of the above methods.
Im aware prevalence is related PPV. And my dataset has very low class -1. Also Random Forest may lean to majority class.
But i was hoping sampling should work but it didn't. Am I missing something? Any suggestion would be really appreciated.

a few methodes should help you:
predict probabilities and do a manual thresholding.
change the loss/metric you are using.
for an imbalance dataset (outliers detection) you shoudln't use class_weight=balance but put more weight on the outliers.
try other algorithm to see if some do better (XGBoost,catboost,lightgbm if you want to stick with tree based solutions)
we can also use tpot to find the best algo in sklearn for your particular dataset
tell me if any of those helped you

Related

SVC classifier taking too much time for training

I am using SVC classifier with Linear kernel to train my model.
Train data: 42000 records
model = SVC(probability=True)
model.fit(self.features_train, self.labels_train)
y_pred = model.predict(self.features_test)
train_accuracy = model.score(self.features_train,self.labels_train)
test_accuracy = model.score(self.features_test, self.labels_test)
It takes more than 2 hours to train my model.
Am I doing something wrong?
Also, what can be done to improve the time
Thanks in advance
There are several possibilities to speed up your SVM training. Let n be the number of records, and d the embedding dimensionality. I assume you use scikit-learn.
Reducing training set size. Quoting the docs:
The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples.
O(n^2) complexity will most likely dominate other factors. Sampling fewer records for training will thus have the largest impact on time. Besides random sampling, you could also try instance selection methods. For example, principal sample analysis has been proposed recently.
Reducing dimensionality. As others have hinted at in their comments, embedding dimension also impacts runtime. Computing inner products for the linear kernel is in O(d). Dimensionality reduction can, therefore, also reduce runtime. In another question, latent semantic indexing was suggested specifically for TF-IDF representations.
Parameters. Use SVC(probability=False) unless you need the probabilities, because they "will slow down that method." (from the docs).
Implementation. To the best of my knowledge, scikit-learn just wraps around LIBSVM and LIBLINEAR. I am speculating here, but you may be able to speed this up by using efficient BLAS libraries, such as in Intel's MKL.
Different classifier. You may try sklearn.svm.LinearSVC, which is...
[s]imilar to SVC with parameter kernel=’linear’, but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples.
Moreover, a scikit-learn dev suggested the kernel_approximation module in a similar question.
I had the same issue, but scaling the data solved the problem
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
You can try using accelerated implementations of algorithms - such as scikit-learn-intelex - https://github.com/intel/scikit-learn-intelex
For SVM you for sure would be able to get higher compute efficiency.
First install package
pip install scikit-learn-intelex
And then add in your python script
from sklearnex import patch_sklearn
patch_sklearn()
Try using the following code. I had similar issue with similar size of the training data.
I changed it to following and the response was way faster
model = SVC(gamma='auto')

How to deal with this unbalanced-class skewed data-set?

I have to deal with Class Imbalance Problem and do a binary-classification of the input test data-set where majority of the class-label is 1 (the other class-label is 0) in the training data-set.
For example, following is some part of the training data :
93.65034,94.50283,94.6677,94.20174,94.93986,95.21071,1
94.13783,94.61797,94.50526,95.66091,95.99478,95.12608,1
94.0238,93.95445,94.77115,94.65469,95.08566,94.97906,1
94.36343,94.32839,95.33167,95.24738,94.57213,95.05634,1
94.5774,93.92291,94.96261,95.40926,95.97659,95.17691,0
93.76617,94.27253,94.38002,94.28448,94.19957,94.98924,0
where the last column is the class-label - 0 or 1. The actual data-set is very skewed with a 10:1 ratio of classes, that is around 700 samples have 0 as their class label, while the rest 6800 have 1 as their class label.
The above mentioned are only a few of the all the samples in the given data-set, but the actual data-set contains about 90% of samples with class-label as 1, and the rest with class-label being 0, despite the fact that more or less all the samples are very much similar.
Which classifier should be best for handling this kind of data-set ?
I have already tried logistic-regression as well as svm with class-weight parameter set as "balanced", but got no significant improvement in accuracy.
but got no significant improvement in accuracy.
Accuracy isn't the way to go (e.g. see Accuracy paradox). With a 10:1 ratio of classes you can easily get a 90% accuracy just by always predicting class-label 0.
Some good starting points are:
try a different performance metric. E.g. F1-score and Matthews correlation coefficient
"resample" the dataset: add examples from the under-represented class (over-sampling) / delete instances from the over-represented class (under-sampling; you should have a lot of data)
a different point of view: anomaly detection is a good try for an imbalanced dataset
a different algorithm is another possibility but not a silver shoot. Probably you should start with decision trees (often perform well on imbalanced datasets)
EDIT (now knowing you're using scikit-learn)
The weights from the class_weight (scikit-learn) parameter are used to train the classifier (so balanced is ok) but accuracy is a poor choice to know how well it's performing.
The sklearn.metrics module implements several loss, score and utility functions to measure classification performance. Also take a look at How to compute precision, recall, accuracy and f1-score for the multiclass case with scikit learn?.
Have you tried plotting a ROC curve and AUC curve to check your parameters and different thresholds? If not that should give you a good starting point.

Techniques to improve the accuracy of SVM classifier

I am trying to build a classifier to predict breast cancer using the UCI dataset. I am using support vector machines. Despite my most sincere efforts to improve upon the accuracy of the classifier, I cannot get beyond 97.062%. I've tried the following:
1. Finding the most optimal C and gamma using grid search.
2. Finding the most discriminative feature using F-score.
Can someone suggest me techniques to improve upon the accuracy? I am aiming at at least 99%.
1.Data are already normalized to the ranger of [0,10]. Will normalizing it to [0,1] help?
2. Some other method to find the best C and gamma?
For SVM, it's important to have the same scaling for all features and normally it is done through scaling the values in each (column) feature such that the mean is 0 and variance is 1. Another way is to scale it such that the min and max are for example 0 and 1. However, there isn't any difference between [0, 1] and [0, 10]. Both will show the same performance.
If you insist on using SVM for classification, another way that may result in improvement is ensembling multiple SVM. In case you are using Python, you can try BaggingClassifier from sklearn.ensemble.
Also notice that you can't expect to get any performance from a real set of training data. I think 97% is a very good performance. It is possible that you overfit the data if you go higher than this.
some thoughts that have come to my mind when reading your question and the arguments you putting forward with this author claiming to have achieved acc=99.51%.
My first thought was OVERFITTING. I can be wrong, because it might depend on the dataset - But the first thought will be overfitting. Now my questions;
1- Has the author in his article stated whether the dataset was split into training and testing set?
2- Is this acc = 99.51% achieved with the training set or the testing one?
With the training set you can hit this acc = 99.51% when your model is overfitting.
Generally, in this case the performance of the SVM classifier on unknown dataset is poor.

Training on imbalanced data using TensorFlow

The Situation:
I am wondering how to use TensorFlow optimally when my training data is imbalanced in label distribution between 2 labels. For instance, suppose the MNIST tutorial is simplified to only distinguish between 1's and 0's, where all images available to us are either 1's or 0's. This is straightforward to train using the provided TensorFlow tutorials when we have roughly 50% of each type of image to train and test on. But what about the case where 90% of the images available in our data are 0's and only 10% are 1's? I observe that in this case, TensorFlow routinely predicts my entire test set to be 0's, achieving an accuracy of a meaningless 90%.
One strategy I have used to some success is to pick random batches for training that do have an even distribution of 0's and 1's. This approach ensures that I can still use all of my training data and produced decent results, with less than 90% accuracy, but a much more useful classifier. Since accuracy is somewhat useless to me in this case, my metric of choice is typically area under the ROC curve (AUROC), and this produces a result respectably higher than .50.
Questions:
(1) Is the strategy I have described an accepted or optimal way of training on imbalanced data, or is there one that might work better?
(2) Since the accuracy metric is not as useful in the case of imbalanced data, is there another metric that can be maximized by altering the cost function? I can certainly calculate AUROC post-training, but can I train in such a way as to maximize AUROC?
(3) Is there some other alteration I can make to my cost function to improve my results for imbalanced data? Currently, I am using a default suggestion given in TensorFlow tutorials:
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
I have heard this may be possible by up-weighting the cost of miscategorizing the smaller label class, but I am unsure of how to do this.
(1)It's ok to use your strategy. I'm working with imbalanced data as well, which I try to use down-sampling and up-sampling methods first to make the training set even distributed. Or using ensemble method to train each classifier with an even distributed subset.
(2)I haven't seen any method to maximise the AUROC. My thought is that AUROC is based on true positive and false positive rate, which doesn't tell how well it works on each instance. Thus, it may not necessarily maximise the capability to separate the classes.
(3)Regarding weighting the cost by the ratio of class instances, it similar to Loss function for class imbalanced binary classifier in Tensor flow
and the answer.
Regarding imbalanced datasets, the first two methods that come to mind are (upweighting positive samples, sampling to achieve balanced batch distributions).
Upweighting positive samples
This refers to increasing the losses of misclassified positive samples when training on datasets that have much fewer positive samples. This incentivizes the ML algorithm to learn parameters that are better for positive samples. For binary classification, there is a simple API in tensorflow that achieves this. See (weighted_cross_entropy) referenced below
https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_entropy_with_logits
Batch Sampling
This involves sampling the dataset so that each batch of training data has an even distribution positive samples to negative samples. This can be done using the rejections sampling API provided from tensorflow.
https://www.tensorflow.org/api_docs/python/tf/contrib/training/rejection_sample
I'm one who struggling with imbalanced data. What my strategy to counter imbalanced data are as below.
1) Use cost function calculating 0 and 1 labels at the same time like below.
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(_pred) + (1-y)*tf.log(1-_pred), reduction_indices=1))
2) Use SMOTE, oversampling method making number of 0 and 1 labels similar. Refer to here, http://comments.gmane.org/gmane.comp.python.scikit-learn/5278
Both strategy worked when I tried to make credit rating model.
Logistic regression is typical method to handle imbalanced data and binary classification such as predicting default rate. AUROC is one of the best metric to counter imbalanced data.
1) Yes. This is well received strategy to counter imbalanced data. But this strategy is good in Neural Nets only if you using SGD.
Another easy way to balance the training data is using weighted examples. Just amplify the per-instance loss by a larger weight/smaller when seeing imbalanced examples. If you use online gradient descent, it can be as simple as using a larger/smaller learning rate when seeing imbalanced examples.
Not sure about 2.

SGD model "overconfidence"

I'm working on binary classification problem using Apache Mahout. The algorithm I use is OnlineLogisticRegression and the model which I currently have strongly tends to produce predictions which are either 1 or 0 without any middle values.
Please suggest a way to tune or tweak the algorithm to make it produce more intermediate values in predictions.
Thanks in advance!
What is the test error rate of the classifier? If it's near zero then being confident is a feature, not a bug.
If the test error rate is high (or at least not low), then the classifier might be overfitting the training set: measure the difference between of the training error and the test error. In that case, increasing regularization as rrenaud suggested might help.
If your classifier is not overfitting, then there might be an issue with the probability calibration. Logistic Regression models (e.g. using the logit link function) should yield good enough probability calibrations (if the problem is approximately linearly separable and the label not too noisy). You can check the calibration of the probabilities with a plot as explained in this paper. If this is really a calibration issue, then implementing a custom calibration based on Platt scaling or isotonic regression might help fix the issue.
From reading the Mahout AbstractOnlineLogisticRegression docs, it looks like you can control the regularization parameter lambda. Increasing lambda should mean your weights are closer to 0, and hence your predictions are more hedged.

Resources