My application is overloaded or not able to do actions after some time what type of errors we will have and how do we identify breakpoints of application with the load test. what types of tests we can do to identify breakpoints. thanks in advance
If you're wanting to overload a web front end application you can try set up concurrent users in a selenium test and seeing how it might break.
If you're wanting to test back end applications then you could write unit / integration tests in a multi-threaded approach and hit it with a lot of queries.
Your question does however need to be a bit more specific or provide some additional info though.
There are 2 main performance testing types:
Load testing - when you put the system under anticipated load, i.e. exactly mimic its real usage by real users and check whether it is capable of supporting X concurrent users providing reasonable response time
Stress testing - when you identify the application under test boundaries and breaking points by putting it under heavier load. I.e. start from anticipated number of users (if you don't have an "anticipated" number - start from 1) and gradually increase the load at the same time keeping an eye on performance metrics.
Ideally when you increase the load by factor of 2x the throughput (number of requests per second) should increase by the same factor. When you increase the load but throughput does not increase it means that you found so called saturation point - it is basically the maximum number of users your system can efficiently support prior to degradation.
If you continue increasing the load you will observe increased response time. Also errors can start occurring. When response starts exceeding the maximum defined in NFR or SLA - you can call this "breaking point".
There is also one more "interesting" performance testing type - Soak Testing which is basically the same as Load Testing (or a little bit more users) but for prolonged period of time, this way you can detect the majority of memory leaks.
Related
I wondered how memory access is handled "in general" if ,for example, 2 cores of CPU try to access memory at the same time (over the memory controller)? Actually the same applies when a core and an DMA-enabled IO device try to access in the same way.
I think, memory controller is smart enough to utilise the address bus and handle those requests concurrently, however I'm not sure what happens when they try to access to same location or when the IO operation monopolises the address bus and there's no room for CPU to move on.
Thx
The short answer is "it's complex, but access can certainly potentially occur in parallel in certain situations".
I think your question is a bit too black and white: you may be looking for an answer like "yes, multiple devices can access memory at the same time" or "no they can't", but the reality is that first you'd need to describe some specific hardware configuration, including some of the low-level implementation details and optimization features to get an exact answer. Finally you'd need to define exactly what you mean by "the same time".
In general, a good first-order approximation is that hardware will make it appear that all hardware can access memory approximately simultaneously, possibly with an increase in latency and a decrease in bandwidth due to contention. At the very fine-grained timing level access one device may indeed postpone access by another device, or it may not, depending on many factors. It is extremely unlikely you would need this information to implement software correctly, and quite unlikely you need to know the details even to maximize performance.
That said, if you really need to know the details, read on and I can give some general observations on some kind of idealized latpop/desktop/server scale hardware.
As Matthias mentioned, you first have to consider caching. Caching means that any read or write operation subject to caching (which includes nearly all CPU requests and many other types of requests as well) may not touch memory at all, so in that sense many cores can "access" memory (at least the cache image of it) simultaneous.
If you then consider requests that miss in all cache levels, you need to know about the configuration of the memory subsystem. In general a RAM chips can only do "one thing" at a time (i.e., commands1 such a read and write apply to the entire module) and that usually extends to DRAM modules comprised of several chips and also to a series of DRAMs connected via a bus to a single memory controller.
So you can say that electrically speaking, the combination of one memory controller and its attached RAM is likely to be doing only on thing at once. Now that thing is usually something like reading bytes out of a physically contiguous span of bytes, but that operation could actually help handle several requests from different devices at once: even though each devices sends separate requests to the controller, good implementations will coalesce requests to the same or nearby2 area of memory.
Furthermore, even the CPU may have such abilities: when a new request occurs it can/must notice that an existing request is in progress for an overlapping region and tie the new request to an old one.
Still, you can say that for a single memory controller you'll usually be serving the request of one device at a time, absent unusual opportunities to combine requests. Now the requests themselves are typically on the order of nanoseconds, so many separate requests can be served in a small unit of time, so this "exclusiveness" fine-grained and not generally noticeable3.
Now above I was careful to limit the discussion to a single memory-controller - when you have multiple memory controllers4 you can definitely have multiple devices accessing memory simultaneously even at the RAM level. Here each controller is essentially independent, so if the requests from two devices map to different controllers (different NUMA regions) they can proceed in parallel.
That's the long answer.
1 In fact, the command stream is lower level and more complex than things like "read" or "write" and involves concepts such as opening a memory page, streaming bytes from it, etc. What every programmer should know about memory serves as an excellent intro to the topic.
2 For example, imagine two requests for adjacent bytes in memory: it is possible the controller can combine them into a single request if they fit within the bus width.
3 Of course if you are competing for memory across several devices, the overall impact may be very noticeable: a reduction in per-device bandwidth and an increase in latency, but what I mean is that the sharing is fine-grained enough that you can't generally tell the difference between finely-sliced exclusive access and some hypothetical device which makes simultaneous progress on each request in each period.
4 The most common configuration on modern hardware is one memory controller per socket, so on a 2P system you'd usually have two controllers, also other rations (both higher and lower) are certainly possible.
There are dozens of things that come into play. E.g. on the lowest level there are bus arbitration mechanisms which allow that multiple participants can access a shared address and data bus.
On a higher level there are also things like CPU caches that need to be considered: If a CPU reads from memory it might only read from it's local cache, which might not reflect that state that exists in another CPU cores local cache. To synchronize memory between cache instances in multicore systems there exist cache coherence protocols which are are implemented in the CPUs. These have to guarantee that if one CPU writes to shared memory the caches of all other CPUs (which might also contain a copy of the memory locations content) get updated.
When I use YJP to do cpu-tracing profile on our own product, it is really slow.
The product runs in a 16 core machine with 8GB heap, and I use grinder to run a small load test (e.g. 10 grinder threads) which have about 7~10 steps during the profiling. I have a script to start the product with profiler, start profiling (using controller api) and then start grinder to emulate user operations. When all the operations finish, the script tells the profiler to stop profiling and save snapshot.
During the profiling, for each step in the grinder test, it takes more than 1 million ms to finish. The whole profiling often takes more than 10 hours with just 10 grinder threads, and each runs the test 10 times. Without profiler, it finishes within 500 ms.
So... besides the problems with the product to be profiled, is there anything else that affects the performance of the cpu tracing process itself?
Last I used YourKit (v7.5.11, which is pretty old, current version is 12) it had two CPU profiling settings: sampling and tracing, the latter being much faster and less accurate. Since tracing is supposed to be more accurate I used it myself and also observed huge slowdown, in spite of the statement that the slowdown were "average". Yet it was far less than your results: from 2 seconds to 10 minutes. My code is a fragment of a calculation engine, virtually no IO, no waits on whatever, just reading a input, calculating and output the result into the console - so the whole slowdown comes from the profiler, no external influences.
Back to your question: the option mentioned - samping vs tracing, will affect the performance, so you may try sampling.
Now that I think of it: YourKit can be setup such that it does things automatically, like making snapshots periodically or on low memory, profiling memory usage, object allocations, each of this measures will make profiling slowlier. Perhaps you should make an online session instead of script controlled, to see what it really does.
According to some Yourkit Doc:
Although tracing provides more information, it has its drawbacks.
First, it may noticeably slow down the profiled application, because
the profiler executes special code on each enter to and exit from the
methods being profiled. The greater the number of method invocations
in the profiled application, the lower its speed when tracing is
turned on.
The second drawback is that, since this mode affects the execution
speed of the profiled application, the CPU times recorded in this mode
may be less adequate than times recorded with sampling. Please use
this mode only if you really need method invocation counts.
Also:
When sampling is used, the profiler periodically queries stacks of
running threads to estimate the slowest parts of the code. No method
invocation counts are available, only CPU time.
Sampling is typically the best option when your goal is to locate and
discover performance bottlenecks. With sampling, the profiler adds
virtually no overhead to the profiled application.
Also, it's a little confusing what the doc means by "CPU time", because it also talks about "wall-clock time".
If you are doing any I/O, waits, sleeps, or any other kind of blocking, it is important to get samples on wall-clock time, not CPU-only time, because it's dangerous to assume that blocked time is either insignificant or unavoidable.
Fortunately, that appears to be the default (though it's still a little unclear):
The default configuration for CPU sampling is to measure wall time for
I/O methods and CPU time for all other methods.
"Use Preconfigured Settings..." allows to choose this and other
presents. (sic)
If your goal is to make the code as fast as possible, don't be concerned with invocation counts and measurement "accuracy"; do find out which lines of code are on the stack a large fraction of the time, and why.
More on all that.
How can I tell grinder to use more and more threads until it reaches a point where the load is unacceptable?
You can ramp in your threads over time, so that as your test progresses, the load increases. See http://grinder.sourceforge.net/g3/script-gallery.html#threadrampup.py
It will be up to you to determine at what point the load level is unacceptable. Grinder Analyzer might be helpful for that.
http://track.sourceforge.net/
Good luck.
One of the advantages of a tool like Grinder, which allows for a coded script, as opposed to Jmeter is that as you are 'ramping up' you can poll the response times and keep increasing until the response time hits a threshold. Other commercial tools have this feature that is 'apply load until response time is > 8 seconds'.
Hi folks and thanks for your time in advance.
I'm currently extending our C# test framework to monitor the memory consumed by our application. The intention being that a bug is potentially raised if the memory consumption significantly jumps on a new build as resources are always tight.
I'm using System.Diagnostics.Process.GetProcessByName and then checking the PrivateMemorySize64 value.
During developing the new test, when using the same build of the application for consistency, I've seen it consume differing amounts of memory despite supposedly executing exactly the same code.
So my question is, if once an application has launched, fully loaded and in this case in it's idle state, hence in an identical state from run to run, can I expect the private bytes consumed to be identical from run to run?
I need to clarify that I can expect memory usage to be consistent as any degree of varience starts to reduce the effectiveness of the test as a degree of tolerance would need to be introduced, something I'd like to avoid.
So...
1) Should the memory usage be 100% consistent presuming the application is behaving consistenly? This was my expectation.
or
2) Is there is any degree of variance in the private byte usage returned by windows or in the memory it allocates when requested by an app?
Currently, if the answer is memory consumed should be consistent as I was expecteding, the issue lies in our app actually requesting a differing amount of memory.
Many thanks
H
Almost everything in .NET uses the runtime's garbage collector, and when exactly it runs and how much memory it frees depends on a lot of factors, many of which are out of your hands. For example, when another program needs a lot of memory, and you have a lot of collectable memory at hand, the GC might decide to free it now, whereas when your program is the only one running, the GC heuristics might decide it's more efficient to let collectable memory accumulate a bit longer. So, short answer: No, memory usage is not going to be 100% consistent.
OTOH, if you have really big differences between runs (say, a few megabytes on one run vs. half a gigabyte on another), you should get suspicious.
If the program is deterministic (like all embedded programs should be), then yes. In an OS environment you are very unlikely to get the same figures due to memory fragmentation and numerous other factors.
Update:
Just noted this a C# app, so no, but the numbers should be relatively close (+/- 10% or less).
I have an application that has multiple threads processing work from a todo queue. I have no influence over what gets into the queue and in what order (it is fed externally by the user). A single work item from the queue may take anywhere between a couple of seconds to several hours of runtime and should not be interrupted while processing. Also, a single work item may consume between a couple of megabytes to around 2GBs of memory. The memory consumption is my problem. I'm running as a 64bit process on a 8GB machine with 8 parallel threads. If each of them hits a worst case work item at the same time I run out of memory. I'm wondering about the best way to work around this.
plan conservatively and run 4 threads only. The worst case shouldn't be a problem anymore, but we waste a lot of parallelism, making the average case a lot slower.
make each thread check available memory (or rather total allocated memory by all threads) before starting with a new item. Only start when more than 2GB memory are left. Recheck periodically, hoping that other threads will finish their memory hogs and we may start eventually.
try to predict how much memory items from the queue will need (hard) and plan accordingly. We could reorder the queue (overriding user choice) or simply adjust the number of running worker threads.
more ideas?
I'm currently tending towards number 2 because it seems simple to implement and solve most cases. However, I'm still wondering what standard ways of handling situations like this exist? The operating system must do something very similar on a process level after all...
regards,
Sören
So your current worst-case memory usage is 16GB. With only 8GB of RAM, you'd be lucky to have 6 or 7GB left after the OS and system processes take their share. So on average you're already going to be thrashing memory on a moderately loaded system. How many cores does the machine have? Do you have 8 worker threads because it is an 8-core machine?
Basically you can either reduce memory consumption, or increase available memory. Your option 1, running only 4 threads, under-utilitises the CPU resources, which could halve your throughput - definitely sub-optimal.
Option 2 is possible, but risky. Memory management is very complex, and querying for available memory is no guarantee that you will be able to go ahead and allocate that amount (without causing paging). A burst of disk I/O could cause the system to increase the cache size, a background process could start up and swap in its working set, and any number of other factors. For these reasons, the smaller the available memory, the less you can rely on it. Also, over time memory fragmentation can cause problems too.
Option 3 is interesting, but could easily lead to under-loading the CPU. If you have a run of jobs that have high memory requirements, you could end up running only a few threads, and be in the same situation as option 1, where you are under-loading the cores.
So taking the "reduce consumption" strategy, do you actually need to have the entire data set in memory at once? Depending on the algorithm and the data access pattern (eg. random versus sequential) you could progressively load the data. More esoteric approaches might involve compression, depending on your data and the algorithm (but really, it's probably a waste of effort).
Then there's "increase available memory". In terms of price/performance, you should seriously consider simply purchasing more RAM. Sometimes, investing in more hardware is cheaper than the development time to achieve the same end result. For example, you could put in 32GB of RAM for a few hundred dollars, and this would immediately improve performance without adding any complexity to the solution. With the performance pressure off, you could profile the application to see just where you can make the software more efficient.
I have continued the discussion on Herb Sutter's blog and provoced some very helpful reader comments. Head over to Sutter's Mill if you are interested.
Thanks for all the suggestions so far!
Sören
Difficult to propose solutions without knowing exactly what you're doing, but how about considering:
See if your processing algorithm can access the data in smaller sections without loading the whole work item into memory.
Consider developing a service-based solution so that the work is carried out by another process (possibly a web service). This way you could scale the solution to run over multiple servers, perhaps using a load balancer to distribute the work.
Are you persisting the incoming work items to disk before processing them? If not, they probably should be anyway, particularly if it may be some time before the processor gets to them.
Is the memory usage proportional to the size of the incoming work item, or otherwise easy to calculate? Knowing this would help to decide how to schedule processing.
Hope that helps?!