What does assumption and inconsistency mean in Bias-Variance dilemma? - machine-learning

I'm reading about machine learning and trying to understand what bias and variance mean. I've read these articles (1, 2, 3 ), but still have a few questions:
Bias:
model is biased in that it assumes that the data will behave in a
certain fashion (linear, quadratic, etc.) even though that assumption
may not be true
What does it mean "assume"? We select the model we want to use. If we select a linear model then it will try to fit the best line it can do.
Variance:
variance measures how inconsistent are the predictions from one
another over different training sets
Why it should be consistent if we use different training set? If we use data of cats it will give one predictions. If we use data of dogs, it will give us different predictions. Or do they mean that when we add more observations to our training set the predictions should improve and not that model now gives us different prediction than from before?

Related

Cross validation and Improvement

I was wondering how the cross validation process can improve a model. I am totally new to this field and keen to learn.
I understood the principle of cross-validation but don't understand how it improves a model. Let's say the model is divided into 4 folds than if I train my model on the 3 first fourth and test on the last one the model is gonna train well. But when I repeat this step by training the model on the last 3 fourth and test on the first one, most of the training data has already been "reviewed" by the model? The model won't improve with data already seen right? Is it a "mean" of the models made with the different training data sets?
Thank you in advance for your time!
Cross validation doesn't actually improve the model, but helps you to accurately score it's performance.
Let's say at the beginning of your training you divide your data into 80% train and 20% test sets. Then you train on the said 80% and test on 20% and get the performance metric.
The problem is, when separating the data in the beginning, you did so hopefully randomly, or otherwise arbitrary, and as a result, the model performance you obtained is somehow relying on the pseudo-random number generator you've used or your judgement.
So instead you divide your data into, for example, 5 random equal sets. Then you take set 1, put it aside, train on sets 2-5, test on set 1 and record the performance metric. Then you put aside set 2, and train a fresh (not trained) model on sets 1, 3-5, test on set 2, record the metric and so on.
After 5 sets you will have 5 performance metrics. If you take their average (of the most appropriate kind) it would be a better representation of your model performance, because you are 'averaging out' the random effects of data splitting.
I think it is explained well in this blog with some code in Python.
With 4-fold cross-validation you are effectively training 4 different models. There's no dependency between the models and one does not train on top of the other.
What will happen later depends on the implementation. Typically you can access all models that were trained and it's left to you what to do with that.

How do I create a feature vector if I don’t have all the data?

So say for each of my ‘things’ to classify I have:
{house, flat, bungalow, electricityHeated, gasHeated, ... }
Which would be made into a feature vector:
{1,0,0,1,0,...} which would mean a house that is heated by electricity.
For my training data I would have all this data- but for the actual thing I want to classify I might only have what kind of house it is, and a couple other things- not all the data ie.
{1,0,0,?,?,...}
So how would I represent this?
I would want to find the probability that a new item would be gasHeated.
I would be using a SVM linear classifier- I don’t have any core to show because this is purely theoretical at the moment. Any help would be appreciated :)
When I read this question, it seems that you may have confused with feature and label.
You said that you want to predict whether a new item is "gasHeated", then "gasHeated" should be a label rather than a feature.
btw, one of the most-common ways to deal with missing value is to set it as "zero" (or some unused value, say -1). But normally, you should have missing value in both training data and testing data to make this trick be effective. If this only happened in your testing data but not in your training data, it means that your training data and testing data are not from the same distribution, which basically violated the basic assumption of machine learning.
Let's say you have a trained model and a testing sample {?,0,0,0}. Then you can create two new testing samples, {1,0,0,0}, {0,0,0,0}, and you will have two predictions.
I personally don't think SVM is a good approach if you have missing values in your testing dataset. Just like I have mentioned above, although you can get two new predictions, but what if each one has different predictions? It is difficult to assign a probability to results of SVM in my opinion unless you use logistic regression or Naive Bayes. I would prefer Random Forest in this situation.

How do you do cross validation correctly? [duplicate]

I am trying to understand the process of model evaluation and validation in machine learning. Specifically, in which order and how the training, validation and test sets must be used.
Let's say I have a dataset and I want to use linear regression. I am hesitating among various polynomial degrees (hyper-parameters).
In this wikipedia article, it seems to imply that the sequence should be:
Split data into training set, validation set and test set
Use the training set to fit the model (find the best parameters: coefficients of the polynomial).
Afterwards, use the validation set to find the best hyper-parameters (in this case, polynomial degree) (wikipedia article says: "Successively, the fitted model is used to predict the responses for the observations in a second dataset called the validation dataset")
Finally, use the test set to score the model fitted with the training set.
However, this seems strange to me: how can you fit your model with the training set if you haven't chosen yet your hyper-parameters (polynomial degree in this case)?
I see three alternative approachs, I am not sure if they would be correct.
First approach
Split data into training set, validation set and test set
For each polynomial degree, fit the model with the training set and give it a score using the validation set.
For the polynomial degree with the best score, fit the model with the training set.
Evaluate with the test set
Second approach
Split data into training set, validation set and test set
For each polynomial degree, use cross-validation only on the validation set to fit and score the model
For the polynomial degree with the best score, fit the model with the training set.
Evaluate with the test set
Third approach
Split data into only two sets: the training/validation set and the test set
For each polynomial degree, use cross-validation only on the training/validation set to fit and score the model
For the polynomial degree with the best score, fit the model with the training/validation set.
Evaluate with the test set
So the question is:
Is the wikipedia article wrong or am I missing something?
Are the three approaches I envisage correct? Which one would be preferrable? Would there be another approach better than these three?
The Wikipedia article is not wrong; according to my own experience, this is a frequent point of confusion among newcomers to ML.
There are two separate ways of approaching the problem:
Either you use an explicit validation set to do hyperparameter search & tuning
Or you use cross-validation
So, the standard point is that you always put aside a portion of your data as test set; this is used for no other reason than assessing the performance of your model in the end (i.e. not back-and-forth and multiple assessments, because in that case you are using your test set as a validation set, which is bad practice).
After you have done that, you choose if you will cut another portion of your remaining data to use as a separate validation set, or if you will proceed with cross-validation (in which case, no separate and fixed validation set is required).
So, essentially, both your first and third approaches are valid (and mutually exclusive, i.e. you should choose which one you will go with). The second one, as you describe it (CV only in the validation set?), is certainly not (as said, when you choose to go with CV you don't assign a separate validation set). Apart from a brief mention of cross-validation, what the Wikipedia article actually describes is your first approach.
Questions of which approach is "better" cannot of course be answered at that level of generality; both approaches are indeed valid, and are used depending on the circumstances. Very loosely speaking, I would say that in most "traditional" (i.e. non deep learning) ML settings, most people choose to go with cross-validation; but there are cases where this is not practical (most deep learning settings, again loosely speaking), and people are going with a separate validation set instead.
What Wikipedia means is actually your first approach.
1 Split data into training set, validation set and test set
2 Use the
training set to fit the model (find the best parameters: coefficients
of the polynomial).
That just means that you use your training data to fit a model.
3 Afterwards, use the validation set to find the best hyper-parameters
(in this case, polynomial degree) (wikipedia article says:
"Successively, the fitted model is used to predict the responses for
the observations in a second dataset called the validation dataset")
That means that you use your validation dataset to predict its values with the previously (on the training set) trained model to get a score of how good your model performs on unseen data.
You repeat step 2 and 3 for all hyperparameter combinations you want to look at (in your case the different polynomial degrees you want to try) to get a score (e.g. accuracy) for every hyperparmeter combination.
Finally, use the test set to score the model fitted with the training
set.
Why you need the validation set is pretty well explained in this stackexchange question
https://datascience.stackexchange.com/questions/18339/why-use-both-validation-set-and-test-set
In the end you can use any of your three aproaches.
approach:
is the fastest because you only train one model for every hyperparameter.
also you don't need as much data as for the other two.
approach:
is slowest because you train for k folds k classifiers plus the final one with all your training data to validate it for every hyperparameter combination.
You also need a lot of data because you split your data three times and that first part again in k folds.
But here you have the least variance in your results. Its pretty unlikely to get k good classifiers and a good validation result by coincidence. That could happen more likely in the first approach. Cross Validation is also way more unlikely to overfit.
approach:
is in its pros and cons in between of the other two. Here you also have less likely overfitting.
In the end it will depend on how much data you have and if you get into more complex models like neural networks, how much time/calculationpower you have and are willing to spend.
Edit As #desertnaut mentioned: Keep in mind that you should use training- and validationset as training data for your evaluation with the test set. Also you confused training with validation set in your second approach.

Order between using validation, training and test sets

I am trying to understand the process of model evaluation and validation in machine learning. Specifically, in which order and how the training, validation and test sets must be used.
Let's say I have a dataset and I want to use linear regression. I am hesitating among various polynomial degrees (hyper-parameters).
In this wikipedia article, it seems to imply that the sequence should be:
Split data into training set, validation set and test set
Use the training set to fit the model (find the best parameters: coefficients of the polynomial).
Afterwards, use the validation set to find the best hyper-parameters (in this case, polynomial degree) (wikipedia article says: "Successively, the fitted model is used to predict the responses for the observations in a second dataset called the validation dataset")
Finally, use the test set to score the model fitted with the training set.
However, this seems strange to me: how can you fit your model with the training set if you haven't chosen yet your hyper-parameters (polynomial degree in this case)?
I see three alternative approachs, I am not sure if they would be correct.
First approach
Split data into training set, validation set and test set
For each polynomial degree, fit the model with the training set and give it a score using the validation set.
For the polynomial degree with the best score, fit the model with the training set.
Evaluate with the test set
Second approach
Split data into training set, validation set and test set
For each polynomial degree, use cross-validation only on the validation set to fit and score the model
For the polynomial degree with the best score, fit the model with the training set.
Evaluate with the test set
Third approach
Split data into only two sets: the training/validation set and the test set
For each polynomial degree, use cross-validation only on the training/validation set to fit and score the model
For the polynomial degree with the best score, fit the model with the training/validation set.
Evaluate with the test set
So the question is:
Is the wikipedia article wrong or am I missing something?
Are the three approaches I envisage correct? Which one would be preferrable? Would there be another approach better than these three?
The Wikipedia article is not wrong; according to my own experience, this is a frequent point of confusion among newcomers to ML.
There are two separate ways of approaching the problem:
Either you use an explicit validation set to do hyperparameter search & tuning
Or you use cross-validation
So, the standard point is that you always put aside a portion of your data as test set; this is used for no other reason than assessing the performance of your model in the end (i.e. not back-and-forth and multiple assessments, because in that case you are using your test set as a validation set, which is bad practice).
After you have done that, you choose if you will cut another portion of your remaining data to use as a separate validation set, or if you will proceed with cross-validation (in which case, no separate and fixed validation set is required).
So, essentially, both your first and third approaches are valid (and mutually exclusive, i.e. you should choose which one you will go with). The second one, as you describe it (CV only in the validation set?), is certainly not (as said, when you choose to go with CV you don't assign a separate validation set). Apart from a brief mention of cross-validation, what the Wikipedia article actually describes is your first approach.
Questions of which approach is "better" cannot of course be answered at that level of generality; both approaches are indeed valid, and are used depending on the circumstances. Very loosely speaking, I would say that in most "traditional" (i.e. non deep learning) ML settings, most people choose to go with cross-validation; but there are cases where this is not practical (most deep learning settings, again loosely speaking), and people are going with a separate validation set instead.
What Wikipedia means is actually your first approach.
1 Split data into training set, validation set and test set
2 Use the
training set to fit the model (find the best parameters: coefficients
of the polynomial).
That just means that you use your training data to fit a model.
3 Afterwards, use the validation set to find the best hyper-parameters
(in this case, polynomial degree) (wikipedia article says:
"Successively, the fitted model is used to predict the responses for
the observations in a second dataset called the validation dataset")
That means that you use your validation dataset to predict its values with the previously (on the training set) trained model to get a score of how good your model performs on unseen data.
You repeat step 2 and 3 for all hyperparameter combinations you want to look at (in your case the different polynomial degrees you want to try) to get a score (e.g. accuracy) for every hyperparmeter combination.
Finally, use the test set to score the model fitted with the training
set.
Why you need the validation set is pretty well explained in this stackexchange question
https://datascience.stackexchange.com/questions/18339/why-use-both-validation-set-and-test-set
In the end you can use any of your three aproaches.
approach:
is the fastest because you only train one model for every hyperparameter.
also you don't need as much data as for the other two.
approach:
is slowest because you train for k folds k classifiers plus the final one with all your training data to validate it for every hyperparameter combination.
You also need a lot of data because you split your data three times and that first part again in k folds.
But here you have the least variance in your results. Its pretty unlikely to get k good classifiers and a good validation result by coincidence. That could happen more likely in the first approach. Cross Validation is also way more unlikely to overfit.
approach:
is in its pros and cons in between of the other two. Here you also have less likely overfitting.
In the end it will depend on how much data you have and if you get into more complex models like neural networks, how much time/calculationpower you have and are willing to spend.
Edit As #desertnaut mentioned: Keep in mind that you should use training- and validationset as training data for your evaluation with the test set. Also you confused training with validation set in your second approach.

How do neural networks learn functions instead of memorize them?

For a class project, I designed a neural network to approximate sin(x), but ended up with a NN that just memorized my function over the data points I gave it. My NN took in x-values with a batch size of 200. Each x-value was multiplied by 200 different weights, mapping to 200 different neurons in my first layer. My first hidden layer contained 200 neurons, each one a linear combination of the x-values in the batch. My second hidden layer also contained 200 neurons, and my loss function was computed between the 200 neurons in my second layer and the 200 values of sin(x) that the input mapped to.
The problem is, my NN perfectly "approximated" sin(x) with 0 loss, but I know it wouldn't generalize to other data points.
What did I do wrong in designing this neural network, and how can I avoid memorization and instead design my NN's to "learn" about the patterns in my data?
It is same with any machine learning algorithm. You have a dataset based on which you try to learn "the" function f(x), which actually generated the data. In real life datasets, it is impossible to get the original function from the data, and therefore we approximate it using something g(x).
The main goal of any machine learning algorithm is to predict unseen data as best as possible using the function g(x).
Given a dataset D you can always train a model, which will perfectly classify all the datapoints (you can use a hashmap to get 0 error on the train set), but which is overfitting or memorization.
To avoid such things, you yourself have to make sure that the model does not memorise and learns the function. There are a few things which can be done. I am trying to write them down in an informal way (with links).
Train, Validation, Test
If you have large enough dataset, use Train, Validation, Test splits. Split the dataset in three parts. Typically 60%, 20% and 20% for Training, Validation and Test, respectively. (These numbers can vary based on need, also in case of imbalanced data, check how to get stratified partitions which preserve the class ratios in every split). Next, forget about the Test partition, keep it somewhere safe, don't touch it. Your model, will be trained using the Training partition. Once you have trained the model, evaluate the performance of the model using the Validation set. Then select another set of hyper-parameter configuration for your model (eg. number of hidden layer, learaning algorithm, other parameters etc.) and then train the model again, and evaluate based on Validation set. Keep on doing this for several such models. Then select the model, which got you the best validation score.
The role of validation set here is to check what the model has learned. If the model has overfit, then the validation scores will be very bad, and therefore in the above process you will discard those overfit models. But keep in mind, although you did not use the Validation set to train the model, directly, but the Validation set was used indirectly to select the model.
Once you have selected a final model based on Validation set. Now take out your Test set, as if you just got new dataset from real life, which no one has ever seen. The prediction of the model on this Test set will be an indication how well your model has "learned" as it is now trying to predict datapoints which it has never seen (directly or indirectly).
It is key to not go back and tune your model based on the Test score. This is because once you do this, the Test set will start contributing to your mode.
Crossvalidation and bootstrap sampling
On the other hand, if your dataset is small. You can use bootstrap sampling, or k-fold cross-validation. These ideas are similar. For example, for k-fold cross-validation, if k=5, then you split the dataset in 5 parts (also be carefull about stratified sampling). Let's name the parts a,b,c,d,e. Use the partitions [a,b,c,d] to train and get the prediction scores on [e] only. Next, use the partitions [a,b,c,e] and use the prediction scores on [d] only, and continue 5 times, where each time, you keep one partition alone and train the model with the other 4. After this, take an average of these scores. This is indicative of that your model might perform if it sees new data. It is also a good practice to do this multiple times and perform an average. For example, for smaller datasets, perform a 10 time 10-folds cross-validation, which will give a pretty stable score (depending on the dataset) which will be indicative of the prediction performance.
Bootstrap sampling is similar, but you need to sample the same number of datapoints (depends) with replacement from the dataset and use this sample to train. This set will have some datapoints repeated (as it was a sample with replacement). Then use the missing datapoins from the training dataset to evaluate the model. Perform this multiple times and average the performance.
Others
Other ways are to incorporate regularisation techniques in the classifier cost function itself. For example in Support Vector Machines, the cost function enforces conditions such that the decision boundary maintains a "margin" or a gap between two class regions. In neural networks one can also do similar things (although it is not same as in SVM).
In neural network you can use early stopping to stop the training. What this does, is train on the Train dataset, but at each epoch, it evaluates the performance on the Validation dataset. If the model starts to overfit from a specific epoch, then the error for Training dataset will keep on decreasing, but the error of the Validation dataset will start increasing, indicating that your model is overfitting. Based on this one can stop training.
A large dataset from real world tends not to overfit too much (citation needed). Also, if you have too many parameters in your model (to many hidden units and layers), and if the model is unnecessarily complex, it will tend to overfit. A model with lesser pameter will never overfit (though can underfit, if parameters are too low).
In the case of you sin function task, the neural net has to overfit, as it is ... the sin function. These tests can really help debug and experiment with your code.
Another important note, if you try to do a Train, Validation, Test, or k-fold crossvalidation on the data generated by the sin function dataset, then splitting it in the "usual" way will not work as in this case we are dealing with a time-series, and for those cases, one can use techniques mentioned here
First of all, I think it's a great project to approximate sin(x). It would be great if you could share the snippet or some additional details so that we could pin point the exact problem.
However, I think that the problem is that you are overfitting the data hence you are not able to generalize well to other data points.
Few tricks that might work,
Get more training points
Go for regularization
Add a test set so that you know whether you are overfitting or not.
Keep in mind that 0 loss or 100% accuracy is mostly not good on training set.

Resources