I will like to use a clustering algorithm to find a clustering for a big Digraph, and I will like remove noise from this graph too. So, I was thinking to use the DBSCAN approach, because I saw that we can give to the algorithm a distance function for determining the distance/similarity between two different nodes.
My question is, how can I define a distance function which increases the similarity between two nodes closes in terms of hops and decrease when a node is isolated.
I don't have coordinates or node attributes, so I can not use those. I only have the topology of the graph.
The expected output will be something like this:
I'm really concern about the complexity of the solution. How can approximate a clustering with a linear complexity ...
What is wrong with the obvious?
Distance(a,b) = length of shortest path, or infinity if there is none.
You probably should take directions into account, so a0 to a3 ist 1.
The distance metric suggested by #Anony-Mousse is a good
and natural one, but I question the use of dbscan. Using
the proposed
distance = length of shortest path, or infinity if there is none
Any two nodes that are directly linked would be at distance 1.
If you used dbscan with epsilon < 1, all points would be noise
points. So you will want epsilon > 1. From your example, it looks
like if there is even one point at distance 1, you want them in
the same component so
it looks like you want minNumPts = 2. This will give the
result that it two points are connected by a path of any length
they would be in the same cluster. It looks to me like what
you are after has nothing to do with density and clustering,
rather, I think that what you want is connected components.
If two nodes are connected by a path of any length, they are
in the same component. Finding this via dbscan or some other clustering
method may be possible, but that is probably the
wrong way to think about this. You have a graph and a graph
theoretic problem. You should probably use methods from graph
theory.
I will illustrate using R and igraph. There are other tools
if you don't care for these.
Most of the work is simply setting up your problem.
library(igraph)
to = c("a1", "a2", "a3", "a0", "b1", "b2", "b3", "b0")
from = c("a0", "a1", "a2", "a3", "b0", "b1", "b2", "b3")
EL = data.frame(from, to)
Vert = c("a0", "a1", "a2", "a3", "b0", "b1", "b2", "b3", "c0", "d0")
Vdf = data.frame(Vert)
g = graph_from_data_frame(d = EL, vertices=Vdf)
LO = matrix(c(1.2,1,1,1.2, 2.2,2,2,2.2, 0, 3, 4,3,2,1,4,3,2,1,4,4),
ncol=2)
plot(g, layout=LO)
Now we can use a one-liner to get everything that we need
about the components.
Comp = components(g, mode="weak")
Comp
$membership
a0 a1 a2 a3 b0 b1 b2 b3 c0 d0
1 1 1 1 2 2 2 2 3 4
$csize
[1] 4 4 1 1
$no
[1] 4
This is telling us component membership of the nodes,
the number of nodes per component and the number of
components. Since you wanted to call the single node
components "noise" in the style of dbscan, you can
see that components 3 and 4 have one node each.
They are the noise. The others are "real" components.
To show how to use this and to come to closure with a
pretty picture, I will plot the graph coloring the
components and use light gray for the "noise".
ColorMap = rainbow(Comp$no)
ColorMap[Comp$csize == 1] = "lightgray"
plot(g, layout=LO, vertex.color=ColorMap[Comp$membership])
I encourage you to think about your graph problem as a graph.
Related
Given input signal x (e.g. a voltage, sampled thousand times per second couple of minutes long), I'd like to calculate e.g.
/ this is not q
y[3] = -3*x[0] - x[1] + x[2] + 3*x[3]
y[4] = -3*x[1] - x[2] + x[3] + 3*x[4]
. . .
I'm aiming for variable window length and weight coefficients. How can I do it in q? I'm aware of mavg and signal processing in q and moving sum qidiom
In the DSP world it's called applying filter kernel by doing convolution. Weight coefficients define the kernel, which makes a high- or low-pass filter. The example above calculates the slope from last four points, placing the straight line via least squares method.
Something like this would work for parameterisable coefficients:
q)x:10+sums -1+1000?2f
q)f:{sum x*til[count x]xprev\:y}
q)f[3 1 -1 -3] x
0n 0n 0n -2.385585 1.423811 2.771659 2.065391 -0.951051 -1.323334 -0.8614857 ..
Specific cases can be made a bit faster (running 0 xprev is not the best thing)
q)g:{prev[deltas x]+3*x-3 xprev x}
q)g[x]~f[3 1 -1 -3]x
1b
q)\t:100000 f[3 1 1 -3] x
4612
q)\t:100000 g x
1791
There's a kx white paper of signal processing in q if this area interests you: https://code.kx.com/q/wp/signal-processing/
This may be a bit old but I thought I'd weigh in. There is a paper I wrote last year on signal processing that may be of some value. Working purely within KDB, dependent on the signal sizes you are using, you will see much better performance with a FFT based convolution between the kernel/window and the signal.
However, I've only written up a simple radix-2 FFT, although in my github repo I do have the untested work for a more flexible Bluestein algorithm which will allow for more variable signal length. https://github.com/callumjbiggs/q-signals/blob/master/signal.q
If you wish to go down the path of performing a full manual convolution by a moving sum, then the best method would be to break it up into blocks equal to the kernel/window size (which was based on some work Arthur W did many years ago)
q)vec:10000?100.0
q)weights:30?1.0
q)wsize:count weights
q)(weights$(((wsize-1)#0.0),vec)til[wsize]+) each til count v
32.5931 75.54583 100.4159 124.0514 105.3138 117.532 179.2236 200.5387 232.168.
If your input list not big then you could use the technique mentioned here:
https://code.kx.com/q/cookbook/programming-idioms/#how-do-i-apply-a-function-to-a-sequence-sliding-window
That uses 'scan' adverb. As that process creates multiple lists which might be inefficient for big lists.
Other solution using scan is:
q)f:{sum y*next\[z;x]} / x-input list, y-weights, z-window size-1
q)f[x;-3 -1 1 3;3]
This function also creates multiple lists so again might not be very efficient for big lists.
Other option is to use indices to fetch target items from the input list and perform the calculation. This will operate only on input list.
q) f:{[l;w;i]sum w*l i+til 4} / w- weight, l- input list, i-current index
q) f[x;-3 -1 1 3]#'til count x
This is a very basic function. You can add more variables to it as per your requirements.
I would like to predict time series values X using another time series Y and the past value of X.In detail, I would like to predict X at time t (Xt) using (Xt-p,...,Xt-1) and (Yt-p,...,Yt-1,Yt) with p the dimension of the "look back".
So, my problem is that I do not have the same length for my 2 predictors.
Let's use a exemple to be clearer.
If I use a timestep of 2, I would have for one observation :
[(Xt-p,Yt-p),...,(Xt-1,Yt-1),(??,Yt)] as input and Xt as output. I do not know what to use instead of the ??
I understand that mathematically speaking I need to have the same length for my predictors, so I am looking for a value to replace the missing value.
I really do not know if there is a good solution here and if I could to something so any help would be greatly appreciated.
Cheers !
PS : you could see my problem as if I wanted to predict the number of ice cream sell one day in advance in a city using the forcast of weather for the next day. X would be the number of ice cream and Y could be the temperature.
You could e.g. do the following:
input_x = Input(shape=input_shape_x)
input_y = Input(shape=input_shape_y)
lstm_for_x = LSTM(50, return_sequences=False)(input_x)
lstm_for_y = LSTM(50, return_sequences=False)(input_y)
merged = merge([lstm_for_x, lstm_for_y], mode="concat") # for keras < 2.0
merged = Concatenate([lstm_for_x, lstm_for_y])
output = Dense(1)(merged)
model = Model([x_input, y_input], output)
model.compile(..)
model.fit([X, Y], X_next)
Where X is an array of sequences, X_forward is X p-steps ahead and Y is an array of sequences of Ys.
I am trying to compute the similarity between n entities that are being described by entity_id, type_of_order, total_value.
An example of the data might look like:
NR entity_id type_of_order total_value
1 1 A 10
2 1 B 90
3 1 C 70
4 2 B 20
5 2 C 40
6 3 A 10
7 3 B 50
8 3 C 20
9 4 B 50
10 4 C 80
My question would be what is a god way of measuring the similarity between entity_id 1 and 2 for example with regards to the type_of_order and the total_value for that type of order.
Would a simple KNN give satisfactory results or should I consider other algorithms?
Any suggestion would be much appreciated.
The similarity metric is a heuristic to capture a relationship between two data rows, with respect to the data semantics and the purpose of the training. We don't know your data; we don't know your usage. It would be irresponsible to suggest metrics to solve a problem when we have no idea what problem we're solving.
You have to address this question to the person you find in the mirror. You've given us three features with no idea of what they mean or how they relate. You need to quantify ...
relative distances within features: under type_of_order, what is the relationship (distance) between any two measurements? If we arbitrarily assign d(A, B) = 1, then what is d(B, C)? We have no information to help you construct this. Further, if we give that some value c, then what is d(A, C)? In various popular metrics, it could be 1+c, |1-c|, all distances could be 1, or perhaps it's something else -- even more than 1+c in some applications.
Even in the last column, we cannot assume that d(10, 20) = d(40, 50); the actual difference could be a ratio, difference of squares, etc. Again, this depends on the semantics behind these labels.
relative weights between features: How do the differences in the various columns combine to provide a similarity? For instance, how does d([A, 10], [B, 20]) compare to d([A, 10], [C, 30])? That's two letters in the left column, two steps of 10 in the right column. How about d([A, 10], [A, 20]) vs d([A, 10], [B, 10])? Are the distances linear, or do the relationships change as we slide up the alphabet or to higher numbers?
I have a convolutional neural network whose output is a 4-channel 2D image. I want to apply sigmoid activation function to the first two channels and then use BCECriterion to computer the loss of the produced images with the ground truth ones. I want to apply squared loss function to the last two channels and finally computer the gradients and do backprop. I would also like to multiply the cost of the squared loss for each of the two last channels by a desired scalar.
So the cost has the following form:
cost = crossEntropyCh[{1, 2}] + l1 * squaredLossCh_3 + l2 * squaredLossCh_4
The way I'm thinking about doing this is as follow:
criterion1 = nn.BCECriterion()
criterion2 = nn.MSECriterion()
error = criterion1:forward(model.output[{{}, {1, 2}}], groundTruth1) + l1 * criterion2:forward(model.output[{{}, {3}}], groundTruth2) + l2 * criterion2:forward(model.output[{{}, {4}}], groundTruth3)
However, I don't think this is the correct way of doing it since I will have to do 3 separate backprop steps, one for each of the cost terms. So I wonder, can anyone give me a better solution to do this in Torch?
SplitTable and ParallelCriterion might be helpful for your problem.
Your current output layer is followed by nn.SplitTable that splits your output channels and converts your output tensor into a table. You can also combine different functions by using ParallelCriterion so that each criterion is applied on the corresponding entry of output table.
For details, I suggest you read documentation of Torch about tables.
After comments, I added the following code segment solving the original question.
M = 100
C = 4
H = 64
W = 64
dataIn = torch.rand(M, C, H, W)
layerOfTables = nn.Sequential()
-- Because SplitTable discards the dimension it is applied on, we insert
-- an additional dimension.
layerOfTables:add(nn.Reshape(M,C,1,H,W))
-- We want to split over the second dimension (i.e. channels).
layerOfTables:add(nn.SplitTable(2, 5))
-- We use ConcatTable in order to create paths accessing to the data for
-- numereous number of criterions. Each branch from the ConcatTable will
-- have access to the data (i.e. the output table).
criterionPath = nn.ConcatTable()
-- Starting from offset 1, NarrowTable will select 2 elements. Since you
-- want to use this portion as a 2 dimensional channel, we need to combine
-- then by using JoinTable. Without JoinTable, the output will be again a
-- table with 2 elements.
criterionPath:add(nn.Sequential():add(nn.NarrowTable(1, 2)):add(nn.JoinTable(2)))
-- SelectTable is simplified version of NarrowTable, and it fetches the desired element.
criterionPath:add(nn.SelectTable(3))
criterionPath:add(nn.SelectTable(4))
layerOfTables:add(criterionPath)
-- Here goes the criterion container. You can use this as if it is a regular
-- criterion function (Please see the examples on documentation page).
criterionContainer = nn.ParallelCriterion()
criterionContainer:add(nn.BCECriterion())
criterionContainer:add(nn.MSECriterion())
criterionContainer:add(nn.MSECriterion())
Since I used almost every possible table operation, it looks a little bit nasty. However, this is the only way I could solve this problem. I hope that it helps you and others suffering from the same problem. This is how the result looks like:
dataOut = layerOfTables:forward(dataIn)
print(dataOut)
{
1 : DoubleTensor - size: 100x2x64x64
2 : DoubleTensor - size: 100x1x64x64
3 : DoubleTensor - size: 100x1x64x64
}
This has become quite a frustrating question, but I've asked in the Coursera discussions and they won't help. Below is the question:
I've gotten it wrong 6 times now. How do I normalize the feature? Hints are all I'm asking for.
I'm assuming x_2^(2) is the value 5184, unless I am adding the x_0 column of 1's, which they don't mention but he certainly mentions in the lectures when talking about creating the design matrix X. In which case x_2^(2) would be the value 72. Assuming one or the other is right (I'm playing a guessing game), what should I use to normalize it? He talks about 3 different ways to normalize in the lectures: one using the maximum value, another with the range/difference between max and mins, and another the standard deviation -- they want an answer correct to the hundredths. Which one am I to use? This is so confusing.
...use both feature scaling (dividing by the
"max-min", or range, of a feature) and mean normalization.
So for any individual feature f:
f_norm = (f - f_mean) / (f_max - f_min)
e.g. for x2,(midterm exam)^2 = {7921, 5184, 8836, 4761}
> x2 <- c(7921, 5184, 8836, 4761)
> mean(x2)
6676
> max(x2) - min(x2)
4075
> (x2 - mean(x2)) / (max(x2) - min(x2))
0.306 -0.366 0.530 -0.470
Hence norm(5184) = 0.366
(using R language, which is great at vectorizing expressions like this)
I agree it's confusing they used the notation x2 (2) to mean x2 (norm) or x2'
EDIT: in practice everyone calls the builtin scale(...) function, which does the same thing.
It's asking to normalize the second feature under second column using both feature scaling and mean normalization. Therefore,
(5184 - 6675.5) / 4075 = -0.366
Usually we normalize all of them to have zero mean and go between [-1, 1].
You can do that easily by dividing by the maximum of the absolute value and then remove the mean of the samples.
"I'm assuming x_2^(2) is the value 5184" is this because it's the second item in the list and using the subscript _2? x_2 is just a variable identity in maths, it applies to all rows in the list. Note that the highest raw mid-term exam result (i.e. that which is not squared) goes down on the final test and the lowest raw mid-term result increases the most for the final exam result. Theta is a fixed value, a coefficient, so somewhere your normalisation of x_1 and x_2 values must become (EDIT: not negative, less than 1) in order to allow for this behaviour. That should hopefully give you a starting basis, by identifying where the pivot point is.
I had the same problem, in my case the thing was that I was using as average the maximum x2 value (8836) minus minimum x2 value (4761) divided by two, instead of the sum of each x2 value divided by the number of examples.
For the same training set, I got the question as
Q. What is the normalized feature x^(3)_1?
Thus, 3rd training ex and 1st feature makes out to 94 in above table.
Now, normalized form is
x = (x - mean(x's)) / range(x)
Values are :
x = 94
mean(89+72+94+69) / 4 = 81
range = 94 - 69 = 25
Normalized x = (94 - 81) / 25 = 0.52
I'm taking this course at the moment and a really trivial mistake I made first time I answered this question was using comma instead of dot in the answer, since I did by hand and in my country we use comma to denote decimals. Ex:(0,52 instead of 0.52)
So in the second time I tried I used dot and works fine.