I am implementing a simple neural net from scratch, just for practice. I have got it working fine with sigmoid, tanh and ReLU activations for binary classification problems. I am now attempting to use it for multi-class, mutually exclusive problems. Of course, softmax is the best option for this.
Unfortunately, I have had a lot of trouble understanding how to implement softmax, cross-entropy loss and their derivatives in backprop. Even after asking a couple of questions here and on Cross Validated, I can't get any good guidance.
Before I try to go further with implementing softmax, is it possible to somehow use sigmoid for multi-class problems (I am trying to predict 1 of n characters, which are encoded as one-hot vectors)? And if so, which loss function would be best? I have been using the squared error for all binary classifications.
Your question is about the fundamentals of neural networks and therefore I strongly suggest you start here ( Michael Nielsen's book ).
It is python-oriented book with graphical, textual and formulated explanations - great for beginners. I am confident that you will find this book useful for your understanding. Look for chapters 2 and 3 to address your problems.
Addressing your question about the Sigmoids, it is possible to use it for multiclass predictions, but not recommended. Consider the following facts.
Sigmoids are activation functions of the form 1/(1+exp(-z)) where z is the scalar multiplication of the previous hidden layer (or inputs) and a row of the weights matrix, in addition to a bias (reminder: z=w_i . x + b where w_i is the i-th row of the weight matrix ). This activation is independent of the others rows of the matrix.
Classification tasks are regarding categories. Without any prior knowledge ,and even with, most of the times, categories have no order-value interpretation; predicting apple instead of orange is no worse than predicting banana instead of nuts. Therefore, one-hot encoding for categories usually performs better than predicting a category number using a single activation function.
To recap, we want an output layer with number of neurons equals to number of categories, and sigmoids are independent of each other, given the previous layer values. We also would like to predict the most probable category, which implies that we want the activations of the output layer to have a meaning of probability disribution. But Sigmoids are not guaranteed to sum to 1, while softmax activation does.
Using L2-loss function is also problematic due to vanishing gradients issue. Shortly, the derivative of the loss is (sigmoid(z)-y) . sigmoid'(z) (error times the derivative), that makes this quantity small, even more when the sigmoid is closed to saturation. You can choose cross entropy instead, or a log-loss.
EDIT:
Corrected phrasing about ordering the categories. To clarify, classification is a general term for many tasks related to what we used today as categorical predictions for definite finite sets of values. As of today, using softmax in deep models to predict these categories in a general "dog/cat/horse" classifier, one-hot-encoding and cross entropy is a very common practice. It is reasonable to use that if the aforementioned is correct. However, there are (many) cases it doesn't apply. For instance, when trying to balance the data. For some tasks, e.g. semantic segmentation tasks, categories can have ordering/distance between them (or their embeddings) with meaning. So please, choose wisely the tools for your applications, understanding what their doing mathematically and what their implications are.
What you ask is a very broad question.
As far as I know, when the class become 2, the softmax function will be the same as sigmoid, so yes they are related. Cross entropy maybe the best loss function.
For the backpropgation, it is not easy to find the formula...there
are many ways.Since the help of CUDA, I don't think it is necessary to spend much time on it if you just want to use the NN or CNN in the future. Maybe try some framework like Tensorflow or Keras(highly recommand for beginers) will help you.
There is also many other factors like methods of gradient descent, the setting of hyper parameters...
Like I said, the topic is very abroad. Why not trying the machine learning/deep learning courses on Coursera or Stanford online course?
Related
I'm recently studying the theory about neural network. And I'm a little confuse about the role of gradient descent and activation function in ANN.
From what I understand, the activation function is used for transforming the model to non-linear model. So that it can solve the problem that is not linear separable. And the gradient descent is the tool to help model learn.
So my questions are :
If I use an activation function such as sigmoid for the model, but instead of using gradient decent to improve the model, I use classic perceptron learning rule : Wj = Wj + a*(y-h(x)), where the h(x) is the sigmoid function with the net input. Can the model learn the non-linear separable problem ?
If I do not include the non-linear activation function in the model. Just simple net input : h(x) = w0 + w1*x1 + ... + wj*xj. And using gradient decent to improve the model. Can the model learn the non-linear separable problem ?
I'm really confused about this problem, that which one is the main reason that the model can learn non-linear separable problem.
Supervised Learning 101
This is a pretty deep question, so I'm going to review the basics first to make sure we understand each other. In its simplest form, supervised learning, and classification in particular, attempts to learn a function f such that y=f(x), from a set of observations {(x_i,y_i)}. The following problems arise in practice:
You know nothing about f. It could be a polynomial, exponential, or some exotic highly non-linear thing that doesn't even have a proper name in math.
The dataset you're using to learn is just a limited, and potentially noisy, subset of the true data distribution you're trying to learn.
Because of this, any solution you find will have to be approximate. The type of architecture you will use will determine a family of function h_w(x), and each value of w will represent one function in this family. Note that because there is usually an infinite number of possible w, the family of functions h_w(x) are often infinitely large.
The goal of learning will then be to determine which w is most appropriate. This is where gradient descent intervenes: it is just an optimisation tool that helps you pick reasonably good w, and thus select a particular model h(x).
The problem is, the actual f function you are trying to approximate may not be part of the family h_w you decided to pick, and so you are .
Answering the actual questions
Now that the basics are covered, let's answer your questions:
Putting a non-linear activation function like sigmoid at the output of a single layer model ANN will not help it learn a non-linear function. Indeed a single layer ANN is equivalent to linear regression, and adding the sigmoid transforms it into Logistic Regression. Why doesn't it work? Let me try an intuitive explanation: the sigmoid at the output of the single layer is there to squash it to [0,1], so that it can be interpreted as a class membership probability. In short, the sigmoid acts a differentiable approximation to a hard step function. Our learning procedure relies on this smoothness (a well-behaved gradient is available everywhere), and using a step function would break eg. gradient descent. This doesn't change the fact that the decision boundary of the model is linear, because the final class decision is taken from the value of sum(w_i*x_i). This is probably not really convincing, so let's illustrate instead using the Tensorflow Playground. Note that the learning rule does not matter here, because the family of function you're optimising over consist only of linear functions on their input, so you will never learn a non-linear one!
If you drop the sigmoid activation, you're left with a simple linear regression. You don't even project your result back to [0,1], so the output will not be simple to interpret as class probability, but the final result will be the same. See the Playground for a visual proof.
What is needed then?
To learn a non-linearly separable problem, you have several solutions:
Preprocess the input x into x', so that taking x' as an input makes the problem linearly separable. This is only possible if you know the shape that the decision boundary should take, so generally only applicable to very simple problems. In the playground problem, since we're working with a circle, we can add the squares of x1 and x2 to the input. Although our model is linear in its input, an appropriate non-linear transformation of the input has been carefully selected, so we get an excellent fit.
We could try to automatically learn the right representation of the data, by adding one or more hidden layers, which will work to extract a good non-linear transformation. It can be proven that using a single hidden layer is enough to approximate anything as long as make the number of hidden neurons high enough. For our example, we get a good fit using only a few hidden neurons with ReLU activations. Intuitively, the more neurons you add, the more "flexible" the decision boundary can become. People in deep learning have been adding depth rather than width because it can be shown that making the network deeper makes it require less neurons overall, even though it makes training more complex.
Yes, gradient descent is quite capable of solving a non-linear problem. The method works as long as the various transformations are roughly linear within a "delta" of the adjustments. This is why we adjust our learning rates: to stay within the ranges in which linear assumptions are relatively accurate.
Non-linear transformations give us a better separation to implement the ideas "this is boring" and "this is exactly what I'm looking for!" If these functions are smooth, or have a very small quantity of jumps, we can apply our accustomed approximations and iterations to solve the overall system.
Determining the useful operating ranges is not a closed-form computation, by any means; as with much of AI research, it requires experimentation and refinement. The direct answer to your question is that you've asked the wrong entity -- try the choices you've listed, and see which works best for your application.
Most examples of neural networks for classification tasks I've seen use the a softmax layer as output activation function. Normally, the other hidden units use a sigmoid, tanh, or ReLu function as activation function. Using the softmax function here would - as far as I know - work out mathematically too.
What are the theoretical justifications for not using the softmax function as hidden layer activation functions?
Are there any publications about this, something to quote?
I haven't found any publications about why using softmax as an activation in a hidden layer is not the best idea (except Quora question which you probably have already read) but I will try to explain why it is not the best idea to use it in this case :
1. Variables independence : a lot of regularization and effort is put to keep your variables independent, uncorrelated and quite sparse. If you use softmax layer as a hidden layer - then you will keep all your nodes (hidden variables) linearly dependent which may result in many problems and poor generalization.
2. Training issues : try to imagine that to make your network working better you have to make a part of activations from your hidden layer a little bit lower. Then - automaticaly you are making rest of them to have mean activation on a higher level which might in fact increase the error and harm your training phase.
3. Mathematical issues : by creating constrains on activations of your model you decrease the expressive power of your model without any logical explaination. The strive for having all activations the same is not worth it in my opinion.
4. Batch normalization does it better : one may consider the fact that constant mean output from a network may be useful for training. But on the other hand a technique called Batch Normalization has been already proven to work better, whereas it was reported that setting softmax as activation function in hidden layer may decrease the accuracy and the speed of learning.
Actually, Softmax functions are already used deep within neural networks, in certain cases, when dealing with differentiable memory and with attention mechanisms!
Softmax layers can be used within neural networks such as in Neural Turing Machines (NTM) and an improvement of those which are Differentiable Neural Computer (DNC).
To summarize, those architectures are RNNs/LSTMs which have been modified to contain a differentiable (neural) memory matrix which is possible to write and access through time steps.
Quickly explained, the softmax function here enables a normalization of a fetch of the memory and other similar quirks for content-based addressing of the memory. About that, I really liked this article which illustrates the operations in an NTM and other recent RNN architectures with interactive figures.
Moreover, Softmax is used in attention mechanisms for, say, machine translation, such as in this paper. There, the Softmax enables a normalization of the places to where attention is distributed in order to "softly" retain the maximal place to pay attention to: that is, to also pay a little bit of attention to elsewhere in a soft manner. However, this could be considered like to be a mini-neural network that deals with attention, within the big one, as explained in the paper. Therefore, it could be debated whether or not Softmax is used only at the end of neural networks.
Hope it helps!
Edit - More recently, it's even possible to see Neural Machine Translation (NMT) models where only attention (with softmax) is used, without any RNN nor CNN: http://nlp.seas.harvard.edu/2018/04/03/attention.html
Use a softmax activation wherever you want to model a multinomial distribution. This may be (usually) an output layer y, but can also be an intermediate layer, say a multinomial latent variable z. As mentioned in this thread for outputs {o_i}, sum({o_i}) = 1 is a linear dependency, which is intentional at this layer. Additional layers may provide desired sparsity and/or feature independence downstream.
Page 198 of Deep Learning (Goodfellow, Bengio, Courville)
Any time we wish to represent a probability distribution over a discrete variable with n possible values, we may use the softmax function. This can be seen as a generalization of the sigmoid function which was used to represent a probability
distribution over a binary variable.
Softmax functions are most often used as the output of a classifier, to represent the probability distribution over n different classes. More rarely, softmax functions can be used inside the model itself, if we wish the model to choose between one of n different options for some internal variable.
Softmax function is used for the output layer only (at least in most cases) to ensure that the sum of the components of output vector is equal to 1 (for clarity see the formula of softmax cost function). This also implies what is the probability of occurrence of each component (class) of the output and hence sum of the probabilities(or output components) is equal to 1.
Softmax function is one of the most important output function used in deep learning within the neural networks (see Understanding Softmax in minute by Uniqtech). The Softmax function is apply where there are three or more classes of outcomes. The softmax formula takes the e raised to the exponent score of each value score and devide it by the sum of e raised the exponent scores values. For example, if I know the Logit scores of these four classes to be: [3.00, 2.0, 1.00, 0.10], in order to obtain the probabilities outputs, the softmax function can be apply as follows:
import numpy as np
def softmax(x):
z = np.exp(x - np.max(x))
return z / z.sum()
scores = [3.00, 2.0, 1.00, 0.10]
print(softmax(scores))
Output: probabilities (p) = 0.642 0.236 0.087 0.035
The sum of all probabilities (p) = 0.642 + 0.236 + 0.087 + 0.035 = 1.00. You can try to substitute any value you know in the above scores, and you will get a different values. The sum of all the values or probabilities will be equal to one. That’s makes sense, because the sum of all probability is equal to one, thereby turning Logit scores to probability scores, so that we can predict better. Finally, the softmax output, can help us to understand and interpret Multinomial Logit Model. If you like the thoughts, please leave your comments below.
I am going to work on a problem that needs to be addressed with either RNN or Deep Neural Nets. In general, the problem is predicting financial values. So, because I am given the sequence of financial data as an input, I thought that RNN would be better. On the other hand, I think that if I can fit the data into some structure, I can train with DNN much better because the training phase is easier in DNN than RNN. For example, I could get last 1-month info and keep 30 inputs and predict 31'th day while using DNN.
I don't understand the advantage of RNN over DNN in this perspective. My first question is about the proper usage of RNN or DNN in this problem.
My second questions are somehow basic. While training RNN, isn't it possible for a network to get "confused"? I mean, consider the following input: 10101111, and our inputs are one digits 0 or 1 and we have 2-sequences (1-0,1-0,1-1,1-1) Hereafter 1, comes 0 several times. And then at the end, after 1 comes 1. While training, wouldn't this become a major problem? That is, why the system not gets confused while training this sequence?
I think your question is phrased a bit problematically. First, DNNs are a class of architectures. A Convolutional Neural Network differs greatly from a Deep Belief Network or a simple Deep MLP. There are feed forward architectures (e.g. TDNN) fit for timeseries prediction but it depends on you, whether you're more interested in research or just solving your problem.
Second, RNNs are as "deep" as it gets. Considering the most basic RNN, the Elman Network: During training with Backpropagation through time (BPTT) they are unfolded in time - backpropagating over T timesteps. Since this backpropagation is done not only vertically like in a standard DNN but also horizontally over T-1 context layers, the past activations of the hidden layers from T-1 timesteps before the present are actually considered for the activation at the current timestep. This illustration of an unfolded net might help in understanding what I just wrote (source):
This makes RNNs so powerful for timeseries prediction (and should answer both your questions). If you have more questions, read about Elman Networks. LSTMs etc. will only confuse you. Understanding Elman Networks and BPTT is the needed foundation to understand any other RNN.
And one last thing you'll need to look out for: The vanishing gradient problem. While it's tempting to say let's make T=infinity and give our RNN as much memory as possible: It doesn't work. There are many ways working around this problem, LSTMs are quite popular at the moment and there are even some proper LSTM implementations around nowadays. But it's important to know that a basic Elman Network could really struggle with T=30.
As you answered yourself - RNN are for sequences. If data has sequential nature (time series) than it is preferable to use such model over DNN and other "static" models. The main reason is that RNN can model process which is responsible for each conequence, so for example given sequences
0011100
0111000
0001110
RNN will be able to build a model, that "after seeing '1' I will see two more" and correctly build a prediction when seeing
0000001**** -> 0000001110
While in the same time, for DNN (and other non sequential models) there is no relation between these three sequences, in fact the only common thing for them is that "there is 1 on forth position, so I guess it is always like that".
Regarding the second question. Why it won't get confused? Because it models sequences, because it has memory. It makes its recisions based on everything that was observed before, and assuming that your signal has any type of regularity, there is always some vent in the past that differentiate between two possible paths of signals. Once again, such phenomena are much better addressed by RNN than non-recurrent models. See for example natural language and enormous progress given by LSTM-based models in recent years.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
Suppose I'm working on some classification problem. (Fraud detection and comment spam are two problems I'm working on right now, but I'm curious about any classification task in general.)
How do I know which classifier I should use?
Decision tree
SVM
Bayesian
Neural network
K-nearest neighbors
Q-learning
Genetic algorithm
Markov decision processes
Convolutional neural networks
Linear regression or logistic regression
Boosting, bagging, ensambling
Random hill climbing or simulated annealing
...
In which cases is one of these the "natural" first choice, and what are the principles for choosing that one?
Examples of the type of answers I'm looking for (from Manning et al.'s Introduction to Information Retrieval book):
a. If your data is labeled, but you only have a limited amount, you should use a classifier with high bias (for example, Naive Bayes).
I'm guessing this is because a higher-bias classifier will have lower variance, which is good because of the small amount of data.
b. If you have a ton of data, then the classifier doesn't really matter so much, so you should probably just choose a classifier with good scalability.
What are other guidelines? Even answers like "if you'll have to explain your model to some upper management person, then maybe you should use a decision tree, since the decision rules are fairly transparent" are good. I care less about implementation/library issues, though.
Also, for a somewhat separate question, besides standard Bayesian classifiers, are there 'standard state-of-the-art' methods for comment spam detection (as opposed to email spam)?
First of all, you need to identify your problem. It depends upon what kind of data you have and what your desired task is.
If you are Predicting Category :
You have Labeled Data
You need to follow Classification Approach and its algorithms
You don't have Labeled Data
You need to go for Clustering Approach
If you are Predicting Quantity :
You need to go for Regression Approach
Otherwise
You can go for Dimensionality Reduction Approach
There are different algorithms within each approach mentioned above. The choice of a particular algorithm depends upon the size of the dataset.
Source: http://scikit-learn.org/stable/tutorial/machine_learning_map/
Model selection using cross validation may be what you need.
Cross validation
What you do is simply to split your dataset into k non-overlapping subsets (folds), train a model using k-1 folds and predict its performance using the fold you left out. This you do for each possible combination of folds (first leave 1st fold out, then 2nd, ... , then kth, and train with the remaining folds). After finishing, you estimate the mean performance of all folds (maybe also the variance/standard deviation of the performance).
How to choose the parameter k depends on the time you have. Usual values for k are 3, 5, 10 or even N, where N is the size of your data (that's the same as leave-one-out cross validation). I prefer 5 or 10.
Model selection
Let's say you have 5 methods (ANN, SVM, KNN, etc) and 10 parameter combinations for each method (depending on the method). You simply have to run cross validation for each method and parameter combination (5 * 10 = 50) and select the best model, method and parameters. Then you re-train with the best method and parameters on all your data and you have your final model.
There are some more things to say. If, for example, you use a lot of methods and parameter combinations for each, it's very likely you will overfit. In cases like these, you have to use nested cross validation.
Nested cross validation
In nested cross validation, you perform cross validation on the model selection algorithm.
Again, you first split your data into k folds. After each step, you choose k-1 as your training data and the remaining one as your test data. Then you run model selection (the procedure I explained above) for each possible combination of those k folds. After finishing this, you will have k models, one for each combination of folds. After that, you test each model with the remaining test data and choose the best one. Again, after having the last model you train a new one with the same method and parameters on all the data you have. That's your final model.
Of course, there are many variations of these methods and other things I didn't mention. If you need more information about these look for some publications about these topics.
The book "OpenCV" has a great two pages on this on pages 462-463. Searching the Amazon preview for the word "discriminative" (probably google books also) will let you see the pages in question. These two pages are the greatest gem I have found in this book.
In short:
Boosting - often effective when a large amount of training data is available.
Random trees - often very effective and can also perform regression.
K-nearest neighbors - simplest thing you can do, often effective but slow and requires lots of memory.
Neural networks - Slow to train but very fast to run, still optimal performer for letter recognition.
SVM - Among the best with limited data, but losing against boosting or random trees only when large data sets are available.
Things you might consider in choosing which algorithm to use would include:
Do you need to train incrementally (as opposed to batched)?
If you need to update your classifier with new data frequently (or you have tons of data), you'll probably want to use Bayesian. Neural nets and SVM need to work on the training data in one go.
Is your data composed of categorical only, or numeric only, or both?
I think Bayesian works best with categorical/binomial data. Decision trees can't predict numerical values.
Does you or your audience need to understand how the classifier works?
Use Bayesian or decision trees, since these can be easily explained to most people. Neural networks and SVM are "black boxes" in the sense that you can't really see how they are classifying data.
How much classification speed do you need?
SVM's are fast when it comes to classifying since they only need to determine which side of the "line" your data is on. Decision trees can be slow especially when they're complex (e.g. lots of branches).
Complexity.
Neural nets and SVMs can handle complex non-linear classification.
As Prof Andrew Ng often states: always begin by implementing a rough, dirty algorithm, and then iteratively refine it.
For classification, Naive Bayes is a good starter, as it has good performances, is highly scalable and can adapt to almost any kind of classification task. Also 1NN (K-Nearest Neighbours with only 1 neighbour) is a no-hassle best fit algorithm (because the data will be the model, and thus you don't have to care about the dimensionality fit of your decision boundary), the only issue is the computation cost (quadratic because you need to compute the distance matrix, so it may not be a good fit for high dimensional data).
Another good starter algorithm is the Random Forests (composed of decision trees), this is highly scalable to any number of dimensions and has generally quite acceptable performances. Then finally, there are genetic algorithms, which scale admirably well to any dimension and any data with minimal knowledge of the data itself, with the most minimal and simplest implementation being the microbial genetic algorithm (only one line of C code! by Inman Harvey in 1996), and one of the most complex being CMA-ES and MOGA/e-MOEA.
And remember that, often, you can't really know what will work best on your data before you try the algorithms for real.
As a side-note, if you want a theoretical framework to test your hypothesis and algorithms theoretical performances for a given problem, you can use the PAC (Probably approximately correct) learning framework (beware: it's very abstract and complex!), but to summary, the gist of PAC learning says that you should use the less complex, but complex enough (complexity being the maximum dimensionality that the algo can fit) algorithm that can fit your data. In other words, use the Occam's razor.
Sam Roweis used to say that you should try naive Bayes, logistic regression, k-nearest neighbour and Fisher's linear discriminant before anything else.
My take on it is that you always run the basic classifiers first to get some sense of your data. More often than not (in my experience at least) they've been good enough.
So, if you have supervised data, train a Naive Bayes classifier. If you have unsupervised data, you can try k-means clustering.
Another resource is one of the lecture videos of the series of videos Stanford Machine Learning, which I watched a while back. In video 4 or 5, I think, the lecturer discusses some generally accepted conventions when training classifiers, advantages/tradeoffs, etc.
You should always keep into account the inference vs prediction trade-off.
If you want to understand the complex relationship that is occurring in your data then you should go with a rich inference algorithm (e.g. linear regression or lasso). On the other hand, if you are only interested in the result you can go with high dimensional and more complex (but less interpretable) algorithms, like neural networks.
Selection of Algorithm is depending upon the scenario and the type and size of data set.
There are many other factors.
This is a brief cheat sheet for basic machine learning.
How should I approach a situtation when I try to apply some ML algorithm (classification, to be more specific, SVM in particular) over some high dimensional input, and the results I get are not quite satisfactory?
1, 2 or 3 dimensional data can be visualized, along with the algorithm's results, so you can get the hang of what's going on, and have some idea how to aproach the problem. Once the data is over 3 dimensions, other than intuitively playing around with the parameters I am not really sure how to attack it?
What do you do to the data? My answer: nothing. SVMs are designed to handle high-dimensional data. I'm working on a research problem right now that involves supervised classification using SVMs. Along with finding sources on the Internet, I did my own experiments on the impact of dimensionality reduction prior to classification. Preprocessing the features using PCA/LDA did not significantly increase classification accuracy of the SVM.
To me, this totally makes sense from the way SVMs work. Let x be an m-dimensional feature vector. Let y = Ax where y is in R^n and x is in R^m for n < m, i.e., y is x projected onto a space of lower dimension. If the classes Y1 and Y2 are linearly separable in R^n, then the corresponding classes X1 and X2 are linearly separable in R^m. Therefore, the original subspaces should be "at least" as separable as their projections onto lower dimensions, i.e., PCA should not help, in theory.
Here is one discussion that debates the use of PCA before SVM: link
What you can do is change your SVM parameters. For example, with libsvm link, the parameters C and gamma are crucially important to classification success. The libsvm faq, particularly this entry link, contains more helpful tips. Among them:
Scale your features before classification.
Try to obtain balanced classes. If impossible, then penalize one class more than the other. See more references on SVM imbalance.
Check the SVM parameters. Try many combinations to arrive at the best one.
Use the RBF kernel first. It almost always works best (computationally speaking).
Almost forgot... before testing, cross validate!
EDIT: Let me just add this "data point." I recently did another large-scale experiment using the SVM with PCA preprocessing on four exclusive data sets. PCA did not improve the classification results for any choice of reduced dimensionality. The original data with simple diagonal scaling (for each feature, subtract mean and divide by standard deviation) performed better. I'm not making any broad conclusion -- just sharing this one experiment. Maybe on different data, PCA can help.
Some suggestions:
Project data (just for visualization) to a lower-dimensional space (using PCA or MDS or whatever makes sense for your data)
Try to understand why learning fails. Do you think it overfits? Do you think you have enough data? Is it possible there isn't enough information in your features to solve the task you are trying to solve? There are ways to answer each of these questions without visualizing the data.
Also, if you tell us what the task is and what your SVM output is, there may be more specific suggestions people could make.
You can try reducing the dimensionality of the problem by PCA or the similar technique. Beware that PCA has two important points. (1) It assumes that the data it is applied to is normally distributed and (2) the resulting data looses its natural meaning (resulting in a blackbox). If you can live with that, try it.
Another option is to try several parameter selection algorithms. Since SVM's were already mentioned here, you might try the approach of Chang and Li (Feature Ranking Using Linear SVM) in which they used linear SVM to pre-select "interesting features" and then used RBF - based SVM on the selected features. If you are familiar with Orange, a python data mining library, you will be able to code this method in less than an hour. Note that this is a greedy approach which, due to its "greediness" might fail in cases where the input variables are highly correlated. In that case, and if you cannot solve this problem with PCA (see above), you might want to go to heuristic methods, which try to select best possible combinations of predictors. The main pitfall of this kind of approaches is the high potential of overfitting. Make sure you have a bunch "virgin" data that was not seen during the entire process of model building. Test your model on that data only once, after you are sure that the model is ready. If you fail, don't use this data once more to validate another model, you will have to find a new data set. Otherwise you won't be sure that you didn't overfit once more.
List of selected papers on parameter selection:
Feature selection for high-dimensional genomic microarray data
Oh, and one more thing about SVM. SVM is a black box. You better figure out what is the mechanism that generate the data and model the mechanism and not the data. On the other hand, if this would be possible, most probably you wouldn't be here asking this question (and I wouldn't be so bitter about overfitting).
List of selected papers on parameter selection
Feature selection for high-dimensional genomic microarray data
Wrappers for feature subset selection
Parameter selection in particle swarm optimization
I worked in the laboratory that developed this Stochastic method to determine, in silico, the drug like character of molecules
I would approach the problem as follows:
What do you mean by "the results I get are not quite satisfactory"?
If the classification rate on the training data is unsatisfactory, it implies that either
You have outliers in your training data (data that is misclassified). In this case you can try algorithms such as RANSAC to deal with it.
Your model(SVM in this case) is not well suited for this problem. This can be diagnozed by trying other models (adaboost etc.) or adding more parameters to your current model.
The representation of the data is not well suited for your classification task. In this case preprocessing the data with feature selection or dimensionality reduction techniques would help
If the classification rate on the test data is unsatisfactory, it implies that your model overfits the data:
Either your model is too complex(too many parameters) and it needs to be constrained further,
Or you trained it on a training set which is too small and you need more data
Of course it may be a mixture of the above elements. These are all "blind" methods to attack the problem. In order to gain more insight into the problem you may use visualization methods by projecting the data into lower dimensions or look for models which are suited better to the problem domain as you understand it (for example if you know the data is normally distributed you can use GMMs to model the data ...)
If I'm not wrong, you are trying to see which parameters to the SVM gives you the best result. Your problem is model/curve fitting.
I worked on a similar problem couple of years ago. There are tons of libraries and algos to do the same. I used Newton-Raphson's algorithm and a variation of genetic algorithm to fit the curve.
Generate/guess/get the result you are hoping for, through real world experiment (or if you are doing simple classification, just do it yourself). Compare this with the output of your SVM. The algos I mentioned earlier reiterates this process till the result of your model(SVM in this case) somewhat matches the expected values (note that this process would take some time based your problem/data size.. it took about 2 months for me on a 140 node beowulf cluster).
If you choose to go with Newton-Raphson's, this might be a good place to start.