I have started recently with ML and TensorFlow. While going through the CIFAR10-tutorial on the website I came across a paragraph which is a bit confusing to me:
The usual method for training a network to perform N-way classification is multinomial logistic regression, aka. softmax regression. Softmax regression applies a softmax nonlinearity to the output of the network and calculates the cross-entropy between the normalized predictions and a 1-hot encoding of the label. For regularization, we also apply the usual weight decay losses to all learned variables. The objective function for the model is the sum of the cross entropy loss and all these weight decay terms, as returned by the loss() function.
I have read a few answers on what is weight decay on the forum and I can say that it is used for the purpose of regularization so that values of weights can be calculated to get the minimum losses and higher accuracy.
Now in the text above I understand that the loss() is made of cross-entropy loss(which is the difference in prediction and correct label values) and weight decay loss.
I am clear on cross entropy loss but what is this weight decay loss and why not just weight decay? How is this loss being calculated?
Weight decay is nothing but L2 regularisation of the weights, which can be achieved using tf.nn.l2_loss.
The loss function with regularisation is given by:
The second term of the above equation defines the L2-regularization of the weights (theta). It is generally added to avoid overfitting. This penalises peaky weights and makes sure that all the inputs are considered. (Few peaky weights means only those inputs connected to it are considered for decision making.)
During gradient descent parameter update, the above L2 regularization ultimately means that every weight is decayed linearly: W_new = (1 - lambda)* W_old + alpha*delta_J/delta_w. Thats why its generally called Weight decay.
Weight decay loss, because it adds to the cost function (the loss to be specific). Parameters are optimized from the loss. Using weight decay you want the effect to be visible to the entire network through the loss function.
TF L2 loss
Cost = Model_Loss(W) + decay_factor*L2_loss(W)
# In tensorflow it bascially computes half L2 norm
L2_loss = sum(W ** 2) / 2
What your tutorial is trying to say by "weight decay loss" is that compared to the cross-entropy cost you know from your unregularized models (i.e. how far off target were your model's predictions on training data), your new cost function penalizes not only prediction error but also the magnitude of the weights in your network. Whereas before you were optimizing only for correct prediction of the labels in your training set, now you are optimizing for correct label prediction as well as having small weights. The reason for this modification is that when a machine learning model trained by gradient descent yields large weights, it is likely they were arrived at in response to peculiarities (or, noise) in the training data. The model will not perform as well when exposed to held-out test data because it is overfit to the training set. The result of applying weight decay loss, more commonly called L2-regularization is that accuracy on training data will drop a bit but accuracy on test data can jump dramatically. And that's what you're after in the end: a model that generalizes well to data it did not see during training.
So you can get a firmer grasp on the mechanics of weight decay, let's look at the learning rule for weights in a L2-regularized network:
where eta and lambda are user-defined learning rate and regularization parameter, respectively and n is the number of training examples (you'll have to look up those Greek letters if you're not familiar). Since the values eta and (eta*lambda)/n both are constants for a given iteration of training, it's enough to interpret the learning rule for weight decay as "for a given weight, subract a small multiple of the derivative of the cost function with respect to that weight, and subtract a small multiple of the weight itself."
Let's look at four weights in an imaginary network and how the above learning rule affects them. As you can see, the regularization term shown in red pushes weights toward zero no matter what. It is designed to minimize the magnitude of the weight matrix, which it does by minimizing the absolute values of individual weights. Some key things to notice in these plots:
When the sign of the cost derivative and the sign are the weight are the same, the regularization term accelerates the weight's path to its optimum!
The amount that the regularization term affects the weight update is proportional to the current value of that weight. I've shown this in the plots with tiny red arrows showing contributions of weights with current values close to zero, and larger red arrows for weights with larger current magnitudes.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
When we have to predict the value of a categorical (or discrete) outcome we use logistic regression. I believe we use linear regression to also predict the value of an outcome given the input values.
Then, what is the difference between the two methodologies?
Linear regression output as probabilities
It's tempting to use the linear regression output as probabilities but it's a mistake because the output can be negative, and greater than 1 whereas probability can not. As regression might actually
produce probabilities that could be less than 0, or even bigger than
1, logistic regression was introduced.
Source: http://gerardnico.com/wiki/data_mining/simple_logistic_regression
Outcome
In linear regression, the outcome (dependent variable) is continuous.
It can have any one of an infinite number of possible values.
In logistic regression, the outcome (dependent variable) has only a limited number of possible values.
The dependent variable
Logistic regression is used when the response variable is categorical in nature. For instance, yes/no, true/false, red/green/blue,
1st/2nd/3rd/4th, etc.
Linear regression is used when your response variable is continuous. For instance, weight, height, number of hours, etc.
Equation
Linear regression gives an equation which is of the form Y = mX + C,
means equation with degree 1.
However, logistic regression gives an equation which is of the form
Y = eX + e-X
Coefficient interpretation
In linear regression, the coefficient interpretation of independent variables are quite straightforward (i.e. holding all other variables constant, with a unit increase in this variable, the dependent variable is expected to increase/decrease by xxx).
However, in logistic regression, depends on the family (binomial, Poisson,
etc.) and link (log, logit, inverse-log, etc.) you use, the interpretation is different.
Error minimization technique
Linear regression uses ordinary least squares method to minimise the
errors and arrive at a best possible fit, while logistic regression
uses maximum likelihood method to arrive at the solution.
Linear regression is usually solved by minimizing the least squares error of the model to the data, therefore large errors are penalized quadratically.
Logistic regression is just the opposite. Using the logistic loss function causes large errors to be penalized to an asymptotically constant.
Consider linear regression on categorical {0, 1} outcomes to see why this is a problem. If your model predicts the outcome is 38, when the truth is 1, you've lost nothing. Linear regression would try to reduce that 38, logistic wouldn't (as much)2.
In linear regression, the outcome (dependent variable) is continuous. It can have any one of an infinite number of possible values. In logistic regression, the outcome (dependent variable) has only a limited number of possible values.
For instance, if X contains the area in square feet of houses, and Y contains the corresponding sale price of those houses, you could use linear regression to predict selling price as a function of house size. While the possible selling price may not actually be any, there are so many possible values that a linear regression model would be chosen.
If, instead, you wanted to predict, based on size, whether a house would sell for more than $200K, you would use logistic regression. The possible outputs are either Yes, the house will sell for more than $200K, or No, the house will not.
Just to add on the previous answers.
Linear regression
Is meant to resolve the problem of predicting/estimating the output value for a given element X (say f(x)). The result of the prediction is a continuous function where the values may be positive or negative. In this case you normally have an input dataset with lots of examples and the output value for each one of them. The goal is to be able to fit a model to this data set so you are able to predict that output for new different/never seen elements. Following is the classical example of fitting a line to set of points, but in general linear regression could be used to fit more complex models (using higher polynomial degrees):
Resolving the problem
Linear regression can be solved in two different ways:
Normal equation (direct way to solve the problem)
Gradient descent (Iterative approach)
Logistic regression
Is meant to resolve classification problems where given an element you have to classify the same in N categories. Typical examples are, for example, given a mail to classify it as spam or not, or given a vehicle find to which category it belongs (car, truck, van, etc ..). That's basically the output is a finite set of discrete values.
Resolving the problem
Logistic regression problems could be resolved only by using Gradient descent. The formulation in general is very similar to linear regression the only difference is the usage of different hypothesis function. In linear regression the hypothesis has the form:
h(x) = theta_0 + theta_1*x_1 + theta_2*x_2 ..
where theta is the model we are trying to fit and [1, x_1, x_2, ..] is the input vector. In logistic regression the hypothesis function is different:
g(x) = 1 / (1 + e^-x)
This function has a nice property, basically it maps any value to the range [0,1] which is appropiate to handle propababilities during the classificatin. For example in case of a binary classification g(X) could be interpreted as the probability to belong to the positive class. In this case normally you have different classes that are separated with a decision boundary which basically a curve that decides the separation between the different classes. Following is an example of dataset separated in two classes.
You can also use the below code to generate the linear regression
curve
q_df = details_df
# q_df = pd.get_dummies(q_df)
q_df = pd.get_dummies(q_df, columns=[
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9"
])
q_1_df = q_df["1"]
q_df = q_df.drop(["2", "3", "4", "5"], axis=1)
(import statsmodels.api as sm)
x = sm.add_constant(q_df)
train_x, test_x, train_y, test_y = sklearn.model_selection.train_test_split(
x, q3_rechange_delay_df, test_size=0.2, random_state=123 )
lmod = sm.OLS(train_y, train_x).fit() lmod.summary()
lmod.predict()[:10]
lmod.get_prediction().summary_frame()[:10]
sm.qqplot(lmod.resid,line="q") plt.title("Q-Q plot of Standardized
Residuals") plt.show()
Simply put, linear regression is a regression algorithm, which outpus a possible continous and infinite value; logistic regression is considered as a binary classifier algorithm, which outputs the 'probability' of the input belonging to a label (0 or 1).
The basic difference :
Linear regression is basically a regression model which means its will give a non discreet/continuous output of a function. So this approach gives the value. For example : given x what is f(x)
For example given a training set of different factors and the price of a property after training we can provide the required factors to determine what will be the property price.
Logistic regression is basically a binary classification algorithm which means that here there will be discreet valued output for the function . For example : for a given x if f(x)>threshold classify it to be 1 else classify it to be 0.
For example given a set of brain tumour size as training data we can use the size as input to determine whether its a benine or malignant tumour. Therefore here the output is discreet either 0 or 1.
*here the function is basically the hypothesis function
They are both quite similar in solving for the solution, but as others have said, one (Logistic Regression) is for predicting a category "fit" (Y/N or 1/0), and the other (Linear Regression) is for predicting a value.
So if you want to predict if you have cancer Y/N (or a probability) - use logistic. If you want to know how many years you will live to - use Linear Regression !
Regression means continuous variable, Linear means there is linear relation between y and x.
Ex= You are trying to predict salary from no of years of experience. So here salary is independent variable(y) and yrs of experience is dependent variable(x).
y=b0+ b1*x1
We are trying to find optimum value of constant b0 and b1 which will give us best fitting line for your observation data.
It is a equation of line which gives continuous value from x=0 to very large value.
This line is called Linear regression model.
Logistic regression is type of classification technique. Dnt be misled by term regression. Here we predict whether y=0 or 1.
Here we first need to find p(y=1) (wprobability of y=1) given x from formuale below.
Probaibility p is related to y by below formuale
Ex=we can make classification of tumour having more than 50% chance of having cancer as 1 and tumour having less than 50% chance of having cancer as 0.
Here red point will be predicted as 0 whereas green point will be predicted as 1.
Cannot agree more with the above comments.
Above that, there are some more differences like
In Linear Regression, residuals are assumed to be normally distributed.
In Logistic Regression, residuals need to be independent but not normally distributed.
Linear Regression assumes that a constant change in the value of the explanatory variable results in constant change in the response variable.
This assumption does not hold if the value of the response variable represents a probability (in Logistic Regression)
GLM(Generalized linear models) does not assume a linear relationship between dependent and independent variables. However, it assumes a linear relationship between link function and independent variables in logit model.
| Basis | Linear | Logistic |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Basic | The data is modelled using a straight line. | The probability of some obtained event is represented as a linear function of a combination of predictor variables. |
| Linear relationship between dependent and independent variables | Is required | Not required |
| The independent variable | Could be correlated with each other. (Specially in multiple linear regression) | Should not be correlated with each other (no multicollinearity exist). |
In short:
Linear Regression gives continuous output. i.e. any value between a range of values.
Logistic Regression gives discrete output. i.e. Yes/No, 0/1 kind of outputs.
To put it simply, if in linear regression model more test cases arrive which are far away from the threshold(say =0.5)for a prediction of y=1 and y=0. Then in that case the hypothesis will change and become worse.Therefore linear regression model is not used for classification problem.
Another Problem is that if the classification is y=0 and y=1, h(x) can be > 1 or < 0.So we use Logistic regression were 0<=h(x)<=1.
Logistic Regression is used in predicting categorical outputs like Yes/No, Low/Medium/High etc. You have basically 2 types of logistic regression Binary Logistic Regression (Yes/No, Approved/Disapproved) or Multi-class Logistic regression (Low/Medium/High, digits from 0-9 etc)
On the other hand, linear regression is if your dependent variable (y) is continuous.
y = mx + c is a simple linear regression equation (m = slope and c is the y-intercept). Multilinear regression has more than 1 independent variable (x1,x2,x3 ... etc)
In linear regression the outcome is continuous whereas in logistic regression, the outcome has only a limited number of possible values(discrete).
example:
In a scenario,the given value of x is size of a plot in square feet then predicting y ie rate of the plot comes under linear regression.
If, instead, you wanted to predict, based on size, whether the plot would sell for more than 300000 Rs, you would use logistic regression. The possible outputs are either Yes, the plot will sell for more than 300000 Rs, or No.
In case of Linear Regression the outcome is continuous while in case of Logistic Regression outcome is discrete (not continuous)
To perform Linear regression we require a linear relationship between the dependent and independent variables. But to perform Logistic regression we do not require a linear relationship between the dependent and independent variables.
Linear Regression is all about fitting a straight line in the data while Logistic Regression is about fitting a curve to the data.
Linear Regression is a regression algorithm for Machine Learning while Logistic Regression is a classification Algorithm for machine learning.
Linear regression assumes gaussian (or normal) distribution of dependent variable. Logistic regression assumes binomial distribution of dependent variable.
The basic difference between Linear Regression and Logistic Regression is :
Linear Regression is used to predict a continuous or numerical value but when we are looking for predicting a value that is categorical Logistic Regression come into picture.
Logistic Regression is used for binary classification.
The opencv SVM implementation takes a parameter labeled as "SVM type" which must be used in the CVSVMParams structure used in training the SVM. All the explanation I can find is:
// SVM type
enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
Anyone know what these different values represent?
They are different formulations of SVM. At the heart of SVM is an mathematical optimization problem. This problem can be stated in different ways.
C-SVM uses C as the tradeoff parameter between the size of margin and the number of training points which are misclassified. C is just a number, the useful range depends on the dataset and it can range from very small (like 10-5) to very large (like 10^5), depending on your data.
nu-SVM uses nu instead of C. nu is roughly a percentage of training points which will end up as support vectors. The more support vectors, the wider your margin is, the more training points which will be misclassified. nu ranges from 0.1 to 0.8 - at 0.1 roughly 10% of training points will be support vectors, at 0.8, more like 80%. I say roughly because its just correlated that way - its not exact.
epsilon-SVR and nu-SVR use SVM for regression. Instead of doing binary classification by finding a maximum margin hyperplane, instead the concept is used to find a hypertube which best fits the data in order to use it to predict future models. They differ in the way they are parameterized (like nu-SVM and C-SVM differ).
One-Class SVM is novelty detection. Rather than binary classification, or predicting a value, instead you give the SVM a training set and it attempts to train a model to wrap around that set so that a future instance can be classified as part of the class or outside the class (novel or outlier).
In general:
Classification SVM Type 1 (also known as C-SVM classification)
Classification SVM Type 2 (also known as nu-SVM classification)
Regression SVM Type 1 (also known as epsilon-SVM regression)
Regression SVM Type 2 (also known as nu-SVM regression)
Details can be found on page SVM