Deserialize missing values of type to certain value - f#

I have made a wrapper type called Skippable<'a> (an F# discriminated union, not unlike Option) specifically meant for indicating which members should be excluded when serializing types:
type Skippable<'a> =
| Skip
| Serialize of 'a
I have functioning converters, but during deserialization, I want missing JSON values to be serialized to the Skip case of the DU (instead of null as is currently happening).
I know of DefaultValueAttribute, but that only works with constant values, and besides I don't want to use an attribute on each and every Skippable-wrapped property in my DTOs.
Is it possible in some way to tell Newtonsoft.Json to populate missing values of a certain type (Skippable<'a>) with a certain value of that type (Skip)? Using converters, contract resolvers, or other methods?

Making Skippable a struct union is one way to do it, since then the default value (e.g. using Unchecked.defaultOf) seems to be the first case with any fields (none, in this case) at their default values.
[<Struct>]
type Skippable<'a> =
| Skip
| Serialize of 'a
// Unchecked.defaultof<Skippable<obj>> = Skip
This is part of the FSharp.JsonSkippable library, which allows you to control in a simple and strongly typed manner whether to include a given property when serializing (and determine whether a property was included when deserializing), and moreover, to control/determine exclusion separately of nullability.

Related

Dart : I want sample code that shows the difference between "reference type" and "value type". (concrete sample code)

Is int type in Dart a value type or reference type?
What is "reference type","value type","canonicalized" in Dart? (concrete definition)
I was looking into the specific definitions of "reference type" and "value type", but in the end, I thought it would be good to understand the code that represents the difference and the behavior (result) of that code.
If possible, I would like Dart code, but if it has the same structure as Dart regarding the above issues, there is no problem in other languages, so I would appreciate it if you could give me sample code.
The meaning of "reference type" and "value type" used here is the distinction made by C#.
A reference type is a traditional object-oriented object. It has identity which it preserves over time. You can have two objects with the same state, but they are different objects.
You don't store reference type values directly into variables. Instead you store a reference to them. When you access members of the object, you do so through the reference (x.foo means "evaluate x to a reference, then access the foo member of the object referenced by that reference).
When you check for identity, identical(a, b), you check whether two different references refer to the same object.
A value type does not have identity. It's defined entirely in terms of its state, its contents. When you assign a value type to a variable, you make a copy of it. It's the "value" in call-by-value.
C# allows you to declare value types with that behavior.
(Reference types do not correspond to call-by-reference, rather to call-by-sharing.)
In Dart, all objects are reference objects. This differs from, say, Java, where an int is a value-type ("primitive type" in their parlance), and they have a separate Integer class which can wrap the int values and is a reference type. That's needed because Integer is a subtype of Object, but int isn't, so you can't store int values in a generic container which expects a subtype of Object.
In Dart, some reference types are still more value-like than others. In particular numbers.
A Dart number, like the integer 1, has precisely one object representing that value. If you write 1 in different places of the program, or even calculate 4 ~/ 4 or 3 - 2, you always get the same object representing the value 1. It's like it's not an object at all, and identical only compares values. And that's precisely what happens, because it allows the compiler to treat integers as primitive values internally, and not worry about sometimes having to give you the same 1 object back that you put in.
This is sometimes expressed as integers being "canonicalized": There is only one canonical instance representing each state.
Dart also canonicalizes other objects.
Constant expressions are canonicalized, so that two different constant expressions generating instances of the same type, with identical states, are made to return the same, canonical, instance representing that value.
Since the value is guaranteed to be immutable, there is no need to have equal objects with different identities. (If they were mutable, it matters very much which one you mutate and which one you don't).

Statically typed Context

I am looking to encode (in some .NET language -- fsharp seems most likely to support) a class of types that form a current context.
The rules would be that we start with an initial context of type 'a. As we progress through the computations the context will be added to, but in a way that I can always get previous values. So assume an operation that adds information to the context, 'a -> 'b, that infers that all elements of 'a are also in 'b.
The idea is similar to an immutable map, but I would like it to be statically typed. Is that feasible? How, or why not? TIA.
Update: The answer appears to be that you cannot quite do this at this time, although I have some good suggestions for modeling what I am looking for in a different way. Thanks to all who tried to help with my poorly worded question.
Separate record types in F# are distinct, even if superficially they have similar structure. Even if the fields of record 'a form a subset of fields of record 'c, there's no way of enforcing that relationship statically. If you have a valid reason to use distinct record types there, the best you could do would be to use reflection to get the fields using FSharpType.GetRecordFields and check if one forms the subset of the other.
Furthermore, introducing a new record type for each piece of data added would result in horrendous amounts of boilerplate.
I see two ways to model it that would feel more at place in F# and still allow you some way of enforcing some form of your 'a :> 'c constraint at runtime.
1) If you foresee a small number of records, all of which are useful in other parts of your program, you can use a discriminated union to enumerate the steps of your process:
type NameAndAmountAndFooDU =
| Initial of Name
| Intermediate of NameAndAmount
| Final of NameAndAmountAndFoo
With that, records that previously were unrelated types 'a and 'c, become part of a single type. That means you can store them in a list inside Context and easily go back in time to see if the changes are going in the right direction (Initial -> Intermediate -> Final).
2) If you foresee a lot of changes like 'adding' a single field, and you care more about the final product than the intermediate ones, you can define a record of option fields based on the final record:
type NameAndAmountAndFooOption =
{
Name: string option
Amount: decimal option
Foo: bool option
}
and have a way to convert it to a non-option NameAndAmountAndFoo (or the intermediate ones like NameAndAmount if you need them for some reason). Then in Context you can set the values of individual fields one at a time, and again, collect the previous records to keep track of how changes are applied.
Something like this?
type Property =
| Name of string
| Amount of float
let context = Map.empty<string,Property>
//Parse or whatever
let context = Map.add "Name" (Name("bob")) context
let context = Map.add "Amount" (Amount(3.14)) context
I have a feeling that if you could show us a bit more of your problem space, there may be a more idiomatic overall solution.

Can a record have a nullable field?

Is it legal for a record to have a nullable field such as:
type MyRec = { startDate : System.Nullable<DateTime>; }
This example does build in my project, but is this good practice if it is legal, and what problems if any does this introduce?
It is legal, but F# encourage using option types instead:
type MyRec = { startDate : option<DateTime>; }
By using option you can easily pattern match against options and other operations to transform option values as for example map values (by using Option.map), and abstractions such as the Maybe monad (by using Option.bind), whereas with nullable you can't since only value types can be made nullables.
You will notice most F# functions (such as List.choose) work with options instead of nullables. Some language features like optional parameters are interpreted as the F# option type.
However in some cases, when you need to interact with C# you may want to use Nullable.
When usign Linq to query a DB you may consider using the Linq.Nullable Module and the Nullable operators
F# does not allow types that are declared in F# to be null. However, if you're using types that are not defined in F#, you are still allowed to use null. This is why your code is still legal. This is needed for inter-operability, because you may need to pass null to a .NET library or accept it as a result.
But I would say it is not a good practice unless your need is specifically of inter-operability. As others pointed out, you can use the option feature. However, this doesn't create an optional record field whose value you don't need to specify when creating it. To create a value of the record type, you still need to provide the value of the optional field.
Also, you can mark a type with the AllowNullLiteral attribute, and F# compiler would allow null as a value for that specific type, even if it is a type declared in F#. But AllowNullLiteral can't be applied to record types.
Oh and I almost forgot to mention: option types are NOT compatible with nullable types. Something that I kind of naively expected to just work (stupid me!). See this nice SO discussion for details.

What's the difference between an option type and a nullable type?

In F# mantra there seems to be a visceral avoidance of null, Nullable<T> and its ilk. In exchange, we are supposed to instead use option types. To be honest, I don't really see the difference.
My understanding of the F# option type is that it allows you to specify a type which can contain any of its normal values, or None. For example, an Option<int> allows all of the values that an int can have, in addition to None.
My understanding of the C# nullable types is that it allows you to specify a type which can contain any of its normal values, or null. For example, a Nullable<int> a.k.a int? allows all of the values that an int can have, in addition to null.
What's the difference? Do some vocabulary replacement with Nullable and Option, null and None, and you basically have the same thing. What's all the fuss over null about?
F# options are general, you can create Option<'T> for any type 'T.
Nullable<T> is a terrifically weird type; you can only apply it to structs, and though the Nullable type is itself a struct, it cannot be applied to itself. So you cannot create Nullable<Nullable<int>>, whereas you can create Option<Option<int>>. They had to do some framework magic to make that work for Nullable. In any case, this means that for Nullables, you have to know a priori if the type is a class or a struct, and if it's a class, you need to just use null rather than Nullable. It's an ugly leaky abstraction; it's main value seems to be with database interop, as I guess it's common to have `int, or no value' objects to deal with in database domains.
Im my opinion, the .Net framework is just an ugly mess when it comes to null and Nullable. You can argue either that F# 'adds to the mess' by having Option, or that it rescues you from the mess by suggesting that you avoid just null/Nullable (except when absolutely necessary for interop) and focus on clean solutions with Options. You can find people with both opinions.
You may also want to see
Best explanation for languages without null
Because every .NET reference type can have this extra, meaningless value—whether or not it ever is null, the possibility exists and you must check for it—and because Nullable uses null as its representation of "nothing," I think it makes a lot of sense to eliminate all that weirdness (which F# does) and require the possibility of "nothing" to be explicit. Option<_> does that.
What's the difference?
F# lets you choose whether or not you want your type to be an option type and, when you do, encourages you to check for None and makes the presence or absence of None explicit in the type.
C# forces every reference type to allow null and does not encourage you to check for null.
So it is merely a difference in defaults.
Do some vocabulary replacement with Nullable and Option, null and None, and you basically have the same thing. What's all the fuss over null about?
As languages like SML, OCaml and Haskell have shown, removing null removes a lot of run-time errors from real code. To the extent that the original creator of null even describes it as his "billion dollar mistake".
The advantage to using option is that it makes explicit that a variable can contain no value, whereas nullable types leave it implicit. Given a definition like:
string val = GetValue(object arg);
The type system does not document whether val can ever be null, or what will happen if arg is null. This means that repetitive checks need to be made at function boundaries to validate the assumptions of the caller and callee.
Along with pattern matching, code using option types can be statically checked to ensure both cases are handled, for example the following code results in a warning:
let f (io: int option) = function
| Some i -> i
As the OP mentions, there isn't much of a semantic difference between using the words optional or nullable when conveying optional types.
The problem with the built-in null system becomes apparent when you want to express non-optional types.
In C#, all reference types can be null. So, if we relied on the built-in null to express optional values, all reference types are forced to be optional ... whether the developer intended it or not. There is no way for a developer to specify a non-optional reference type (until C# 8).
So, the problem isn't with the semantic meaning of null. The problem is null is hijacked by reference types.
As a C# developer, i wish I could express optionality using the built-in null system. And that is exactly what C# 8 is doing with nullable reference types.
Well, one difference is that for a Nullable<T>, T can only be a struct which reduces the use cases dramatically.
Also make sure to read this answer: https://stackoverflow.com/a/947869/288703

Duh? help with f# option types

I am having a brain freeze on f#'s option types. I have 3 books and read all I can but I am not getting them.
Does someone have a clear and concise explanation and maybe a real world example?
TIA
Gary
Brian's answer has been rated as the best explanation of option types, so you should probably read it :-). I'll try to write a more concise explanation using a simple F# example...
Let's say you have a database of products and you want a function that searches the database and returns product with a specified name. What should the function do when there is no such product? When using null, the code could look like this:
Product p = GetProduct(name);
if (p != null)
Console.WriteLine(p.Description);
A problem with this approach is that you are not forced to perform the check, so you can easily write code that will throw an unexpected exception when product is not found:
Product p = GetProduct(name);
Console.WriteLine(p.Description);
When using option type, you're making the possibility of missing value explicit. Types defined in F# cannot have a null value and when you want to write a function that may or may not return value, you cannot return Product - instead you need to return option<Product>, so the above code would look like this (I added type annotations, so that you can see types):
let (p:option<Product>) = GetProduct(name)
match p with
| Some prod -> Console.WriteLine(prod.Description)
| None -> () // No product found
You cannot directly access the Description property, because the reuslt of the search is not Product. To get the actual Product value, you need to use pattern matching, which forces you to handle the case when a value is missing.
Summary. To summarize, the purpose of option type is to make the aspect of "missing value" explicit in the type and to force you to check whether a value is available each time you work with values that may possibly be missing.
See,
http://msdn.microsoft.com/en-us/library/dd233245.aspx
The intuition behind the option type is that it "implements" a null-value. But in contrast to null, you have to explicitly require that a value can be null, whereas in most other languages, references can be null by default. There is a similarity to SQLs NULL/NOT NULL if you are familiar with those.
Why is this clever? It is clever because the language can assume that no output of any expression can ever be null. Hence, it can eliminate all null-pointer checks from the code, yielding a lot of extra speed. Furthermore, it unties the programmer from having to check for the null-case all the same, should he or she want to produce safe code.
For the few cases where a program does require a null value, the option type exist. As an example, consider a function which asks for a key inside an .ini file. The key returned is an integer, but the .ini file might not contain the key. In this case, it does make sense to return 'null' if the key is not to be found. None of the integer values are useful - the user might have entered exactly this integer value in the file. Hence, we need to 'lift' the domain of integers and give it a new value representing "no information", i.e., the null. So we wrap the 'int' to an 'int option'. Now, if there is no integer value we will get 'None' and if there is an integer value, we will get 'Some(N)' where N is the integer value in question.
There are two beautiful consequences of the choice. One, we can use the general pattern match features of F# to discriminate the values in e.g., a case expression. Two, the framework of algebraic datatypes used to define the option type is exposed to the programmer. That is, if there were no option type in F# we could have created it ourselves!

Resources