Testing protocol extension with default implementations - ios

In past projects, I've had an object use constructor injection for the objects it needs to get some other information. For example:
class Foo {
let appInfo: AppInfoType
init(appInfo: AppInfoType) {
self.appInfo = appInfo
}
}
protocol AppInfoType {
func build(bundle: Bundle) -> String?
}
And then if within Foo, information about the app like build is needed, it can use AppInfoType to get that info. I thought I would see what this looked like with protocol extensions.
extension AppInfoType {
func build(bundle: Bundle) -> String? {
return bundle.infoDictionary?[kCFBundleVersionKey as String] as? String
}
}
class Foo: AppInfoType {
}
So now I can achieve the same thing within Foo by just calling build(bundle: Bundle.main). But is there any easy way to test this now? With the first way, I could still create a MockAppInfoType and provide an implementation for build(bundle: Bundle), but now I don't really see a way to do this unless the protocol extension maybe depended on another protocol where I could inject a mock for that protocol.

Related

Binding Protocols with Associated Objects - Protocol Oriented Programming with Swift

i'm an iOS dev with a couple of years of experience with swift, but rarely i've used PAT's...
This time, I was trying to move some code from an app that i've developed to a shared library that I use in a couple of projects. The case is about a Factory that uses various Builders (that are decorators of my business resources) via an Abstract Builder protocol, to obtain Items (in the real case, ViewControllers).
The Builder relays upon some variables that the Factory passes to him, but those are at the application level, so, to extract this logic and put it into my library, i need to use a generic reference, and because I want to work in a Protocol Oriented Programming manner, it is an AssociatedType.
// The item that i want to receive from my factory
protocol Item {
var content: String { get }
}
// This is the Builder interface that the Factory consumes
protocol Builder {
// The Abstract Parameters that the Application should define
associatedtype Parameters
func build(_ parameters: Parameters) -> Item?
}
// The BusinessResource of my library
protocol BusinessResource { }
// The Factory that consumes the Builders
protocol Factory {
associatedtype FactoryBuilder: Builder
var parameters: FactoryBuilder.Parameters { get }
func make(from businessResource: BusinessResource) -> Item?
}
// The generic implementation of my Factory
extension Factory {
func make(from businessResource: BusinessResource) -> Item? {
guard let builder = businessResource as? FactoryBuilder else {
return nil
}
return builder.build(self.parameters)
}
}
At this point everything looks good.
I have two protocols and those are binded together, sharing a common type who is generic (the Builder Parameters).
So, on the application layer, now i could introduce my concrete Parameters (i'll call them ConcreteParameters XD)
// The concrete parameters of the Application Factory
struct ConcreteParameters {
let string: String
}
// The Builder interface restricting Parameters to ConcreteParameters
protocol BindedBuilder: Builder where Parameters == ConcreteParameters {
}
// The Factory interface restricting Parameters to ConcreteParameters
protocol BindedFactory: AbstractFactory where FactoryParameters: ConcreteParameters {
}
So far, so good. Everything looks in place and I'm start thinking that this could work, so now i try to implement a concrete Factory on the application to try if this really works.
// The concrete output of my Builder
struct ConcreteItem: Item {
var content: String
}
// The concrete BusinessResource that i get from my library
struct ConcreteObject: BusinessResource {
let string: String
}
// The decoration extension that makes ConcreteObject compliant with Builder
extension ConcreteObject: Builder {
typealias Parameters = ConcreteParameters
func build(_ parameters: ConcreteParameters) -> Item? {
return ConcreteItem(content: parameters.string + self.string)
}
}
// The real Factory inside my app
class ConcreteFactory: BindedFactory {
typealias FactoryBuilder = BindedBuilder
var parameters: ConcreteParameters {
return ConcreteParameters(string: "Hello ")
}
}
let item = ConcreteFactory().make(from: ConcreteObject(string: "world!"))
print(item ?? "NOT WORKING")
At this point something breaks... I get this error:
[EDIT: Error came from a previous version of the snippet, AbstractFactori is current Factory]
It is a Bug??
I really don't know how to solve this...
I think in this case you need to use a concrete type to alias FactoryBuilder instead of BindedBuilder, as protocols do not conform to themselves.
This code effectively compiles, would something like that match your requirements?
class ConcreteFactory: BindedFactory {
typealias FactoryBuilder = ConcreteObject
var parameters: ConcreteParameters {
return ConcreteParameters(string: "Hello ")
}
}
Otherwise you can also try type erasing BindedBuilder and create AnyBindedBuilder, as suggested in the same link.

How to define of initializing generic type in Swift

I'm writing the function like this
func issueArrayFromResponse(response: DataResponse<Any>) -> Result<[Issue]> {}
However this kind of function appear many time, such as repoArrayFromResponse, gistArrayFromRespnse and so on. So I tried to make these functions into one.
func arrayFromResponse<T>(response: DataResponse<Any>) -> Result<[T]> {}
The problem is I don't have initializer for type T and don't know how to achieve it. In case issueArrayFromResponse, I have a class Issue and it has initializer: init(json: [[String: Any]]), so i was able to write
issue = Issue(json: item)
However, in case arrayFromResponse<T>, the compiler says 'T' cannot be constructed because it has no accessible initializers
How can I make initializer for T?
I think the easiest way is to make protocol.
You can make such protocol:
protocol ResultProtocol {
}
and confirm all your classes to this protocol
class Issue: ResultProtocol {
init(json: String) {
}
}
then you can:
func arrayFromResponse<T: ResultProtocol>(response: DataResponse<Any>) -> Result<[T]> {
return Result<[T]>()
}

Building composable objects in Swift with protocols

I'm trying to create a way to build compassable objects in Swift. I feel like I'm almost there with what I have but it's still not 100% correct.
What I'm aiming for is to have a FlowController object that can create our UIViewControllers and then give them any of the dependencies that they need.
What I'd also like to do is make this work as loosely as possible.
I have a small example here that works but is not ideal. I'll explain...
Here are two objects that can be used as components... Wallet and User.
class Wallet {
func topUp(amount: Int) {
print("Top up wallet with £\(amount)")
}
}
class User {
func sayHello() {
Print("Hello, world!")
}
}
We then define a Component enum that has cases for each of these...
enum Component {
case Wallet
case User
}
... And a protocol that defines a method requiresComponents that returns an array of Components.
This is where the problem arises. In order for the "factory object" to put the components into a Composable object we need to define the user and wallet properties in the protocol also.
protocol Composable {
var user: User? {get set}
var wallet: Wallet? {get set}
func requiresComponents() -> [Component]
}
In an attempt to make these properties "optional" (not Optional) I have defined an extension to the Composable protocol that defines these vars as nil.
extension Composable {
var user: User? {
get {return nil}
set {}
}
var wallet: Wallet? {
get {return nil}
set {}
}
}
Now I declare the class that I want to make Composable. As you can see it requires the User component and declares the variable.
class SomeComposableClass: Composable {
var user: User?
func requiresComponents() -> [Component] {
return [.User]
}
}
Now the FlowController that will create these and add the components to them. You can see here that I have had to take the object, create a local var version of it and then return the updated object. I think this is because it doesn't know the type of objects that will be conforming to the protocol so the parameter can't be mutated.
class FlowController {
func addComponents<T: Composable>(toComposableObject object: T) -> T {
var localObject = object
for component in object.requiresComponents() {
switch component {
case .Wallet:
localObject.wallet = Wallet()
print("Wallet")
case .User:
localObject.user = User()
print("User")
}
}
return localObject
}
}
Here I create the objects.
let flowController = FlowController()
let composable = SomeComposableClass()
And here I add the components. In production this would be done all inside the FlowController.
flowController.addComponents(toComposableObject: composable) // prints "User" when adding the user component
compassable.user?.sayHello() // prints "Hello, world!"
As you can see, it works here. The user object is added.
However, as you can also see. Because I have declared the vars in the protocol the composable object also has a reference to a wallet component (although it will always be nil).
composable.wallet // nil
I feel like I'm about 95% of the way there with this but what I'd like to be able to do is improve how the properties are declared. What I'd like is for that last line... composable.wallet to be a compile error.
I could do this by moving the declaration of the properties out of the protocol but then I have the problem of not being able to add the properties to any object that conforms to the Composable protocol.
What would be awesome is for the factory object to be able to add the properties without relying on the declaration. Or even have some sort of guard that says "if this object has a property call user then add the user component to it". Or something like that.
If anyone knows how I could get the other 5% of this working it would be awesome. Like I said, this works, just not in an ideal way.
Thanks :D
Hacky Edit
Hmm... As a quick tacky, horrible, "no-one-should-do-this" edit. I have changed my protocol extension to be like this...
extension Composable {
var user: User? {
get {fatalError("Access user")}
set {fatalError("Set user")}
}
var wallet: Wallet? {
get {fatalError("Access wallet")}
set {fatalError("Set waller")}
}
}
Now at least the program will crash if I try to access a variable I have not defined. But it's still not ideal.
Edit after reading Daniel's blog
OK, I think I've done what I wanted. Just not sure that it's exactly Swifty. Although, I also think it might be. Looking for a second opinion :)
So, my components and protocols have become this...
// these are unchanged
class Wallet {
func topUp(amount: Int) {
print("Top up wallet with £\(amount)")
}
}
// each component gets a protocol
protocol WalletComposing {
var wallet: Wallet? {get set}
}
class User {
func sayHello() {
print("Hello, world!")
}
}
protocol UserComposing {
var user: User? {get set}
}
Now the factory method has changed...
// this is the bit I'm unsure about.
// I now have to check for conformance to each protocol
// and add the components accordingly.
// does this look OK?
func addComponents(toComposableObject object: AnyObject) {
if var localObject = object as? UserComposing {
localObject.user = User()
print("User")
}
if var localObject = object as? WalletComposing {
localObject.wallet = Wallet()
print("Wallet")
}
}
This allows me to do this...
class SomeComposableClass: UserComposing {
var user: User?
}
class OtherClass: UserComposing, WalletComposing {
var user: User?
var wallet: Wallet?
}
let flowController = FlowController()
let composable = SomeComposableClass()
flowController.addComponents(toComposableObject: composable)
composable.user?.sayHello()
composable.wallet?.topUp(amount: 20) // this is now a compile time error which is what I wanted :D
let other = OtherClass()
flowController.addComponents(toComposableObject: other)
other.user?.sayHello()
other.wallet?.topUp(amount: 10)
This seems like a good case for applying the Interface Segregation Principle
Specifically, rather than having a master Composable protocol, have many smaller protocols like UserComposing and WalletComposing. Then your concrete types that wish to compose those various traits, would just list their "requiredComponents" as protocols they conform to, i.e:
class FlowController : UserComposing, WalletComposing
I actually wrote a blog post that talks about this more extensively and gives more detailed examples at http://www.danielhall.io/a-swift-y-approach-to-dependency-injection
UPDATE:
Looking at the updated question and sample code, I would only suggest the following refinement:
Going back to your original design, it might make sense to define a base Composing protocol that requires any conforming class to create storage for composed traits as a dictionary. Something like this:
protocol Composing : class {
var traitDictionary:[String:Any] { get, set }
}
Then, use protocol extensions to add the actual composable trait as a computed property, which reduces the boilerplate of having to create those properties in every conforming class. This way any class can conform to any number of trait protocols without having to declare a specific var for each. Here's a more complete example implementation:
class FlowController {
static func userFor(instance:UserComposing) -> User {
return User()
}
static func walletFor(instance:WalletComposing) -> Wallet {
return Wallet()
}
}
protocol Composing : class {
var traitDictionary:[String:Any] { get, set }
}
protocol UserComposing : Composing {}
extension UserComposing {
var user:User {
get {
if let user = traitDictionary["user"] as? User {
return user
}
else {
let user = FlowController.userFor(self)
traitDictionary["user"] = user
return user
}
}
}
}
protocol WalletComposing {}
extension WalletComposing {
var wallet:Wallet {
get {
if let wallet = traitDictionary["wallet"] as? Wallet {
return wallet
}
else {
let wallet = FlowController.walletFor(self)
traitDictionary["wallet"] = wallet
return wallet
}
}
}
}
class AbstractComposing {
var traitDictionary = [String:Any]()
}
Not only does this get rid of those pesky optionals you have to unwrap everywhere, but it makes the injection of user and wallet implicit and automatic. That means that your classes will already have the right values for those traits even inside their own initializers, no need to explicitly pass each new instance to an instance of FlowController every time.
For example, your last code snippet would now become simply:
class SomeComposableClass: AbstractComposing, UserComposing {} // no need to declare var anymore
class OtherClass: AbstractComposing, UserComposing, WalletComposing {} //no vars here either!
let composable = SomeComposableClass() // No need to instantiate FlowController and pass in this instance
composable.user.sayHello() // No unwrapping the optional, this is guaranteed
composable.wallet.topUp(amount: 20) // this is still a compile time error which is what you wanted :D
let other = OtherClass() // No need to instantiate FlowController and pass in this instance
other.user.sayHello()
other.wallet.topUp(amount: 10) // It all "just works" ;)

Where to put reusable functions in IOS Swift?

New to IOS programming but just wondering where is the best place to put functions that I would use throughout my code. For example, I want to write a few functions to perform a POST request to a web service and return a dictionary. Maybe another function to do some calculations. Is it best to create another .swift file and put all my functions there. And what would be a good name to give the file if so?
public func postRequest() -> [String:String] {
// do a post request and return post data
return ["someData" : "someData"]
}
The best way is to create a helper class with static functions, like this:
class Helper{
static func postRequest() -> [String:String] {
// do a post request and return post data
return ["someData" : "someData"]
}
}
Now every time you need to use postRequest you can just use like so: Helper.postRequest()
I usually create a separate class if I have functions that will be used by multiple classes, especially for the ones involving network operations.
If you just have separate functions that will be used, you can simply create static functions inside that class so it is easily accessible by other classes in a static way:
class DataController {
static func getData() -> [String:String] {
// do some operations
return ["someData" : "someData"]
}
}
let data = DataController.getData() // example
However, what often has been the case for me (especially if it involves more complicated operations) was that these network operations needed to establish an initial connection beforehand or required some initial setups, and they also performed asynchronous operations that needed to be controlled. If this is the case and you will often be calling such methods, you might want to create a singleton object that you could use throughout different classes and functions. This way, you could do the initial setup or establish an initial connection just once, and then do the rest as needed with the other functions, instead of doing them every time the function gets called.
Creating a singleton object is pretty simple in Swift:
class DataController {
static let sharedInstance = DataController() // singleton object
init() {
// do initial setup or establish an initial connection
}
func getData() -> [String:String] {
// do some operations
return ["someData" : "someData"]
}
}
let data = DataController.sharedInstance.getData() // example
For the name of the class, I usually name it something like DataController or DataHelper, but anything that makes sense as a "helper" class would work.
Hope this helps :)
For reusable functions it depends what I decide to use. For this specific case I use a separate file, because posting to a backend will become more complicated when the application evolves. In my app I use a backend class, with all kinds of helper classes:
struct BackendError {
var message : String
}
struct SuccessCall {
var json : JSON
var containsError : Bool {
if let error = json["error"].string {
return true
}
else {
return false
}
}
}
typealias FailureBlock = (BackendError) -> Void
typealias SuccessBlock = (SuccessCall) -> Void
typealias AlamoFireRequest = (path: String, method: Alamofire.Method, data: [String:String]) -> Request
typealias GetFunction = (path: String , data: [String : String], failureBlock: FailureBlock, successBlock: SuccessBlock) -> Void
class Backend {
func getRequestToBackend (token: String )(path: String , data: [String : String], failureBlock: FailureBlock, successBlock:
}
For other cases I often use extensions on Swift classes. Like for getting a random element from an Array.
extension Array {
func sampleItem() -> T {
let index = Int(arc4random_uniform(UInt32(self.count)))
return self[index]
}
}
This very old question but I would like to chirp some more points.
There are a few option, basically you can write your utility functions in Swift -
A class with static function. For example
class CommonUtility {
static func someTask() {
}
}
// uses
CommonUtility.someTask()
Also, you can have class method's as well instead of static method but those functions can be overridden by subclasses unlike static functions.
class CommonUtility {
class func someTask() {
}
}
// uses
CommonUtility.someTask()
Secondly, you can have Global functions as well, that are not part of any class and can be access anywhere from your app just by name.
func someTask() {
}
Though, selecting one over other is very subjective and I thing this is ok to make a class with static function in this particular case, where you need to achieve networking functionality but if you have some functions which perform only one task than Global function is a way to go because Global functions are more modular and separate out single tasks for a single function.
In case of static functions, if we access one of the static member, entire class gets loaded in memory. But in case of global function, only that particular function will be loaded in mem
You can create a separate swift class, might name it WebServicesManager.swift, and write all methods related to web requests in it.
You can use class methods, or singleton pattern to access the methods.

How to reference a class that follows a protocol in return type of function?

I have a protocol called Social Service, declared as follows:
protocol SocialService: class {
class func testFunc()
}
A class that follows the protocol may look like this:
class Twitter: SocialService {
class func testFunc() {
}
}
I want to have a method which returns a class that follows this protocol, so calling it would look like this:
let socialService = socialServiceForServiceType(serviceType: String)
I'm not sure what I need to put as the return value type of this function. For example, this:
func socialServiceForServiceType(serviceType: String) -> SocialService.Type
doesn't give an error right here, but trying to call it as above, gives an error:
Accessing members of protocol type value 'SocialService.Type' is
unimplemented
EDIT: I don't want an instance of that type, I want a class of that type. So I want a Twitter class, so I can call the class methods from the SocialService protocol on it.
Like the error says, this feature is unimplemented. However...
I don't want an instance of that type, I want a class of that type. So I want a Twitter class, so I can call the class methods from the SocialService protocol on it.
I'm not sure what you think you're getting from avoiding instances like this. Bear in mind classes don’t need to have member variables, and without them are essentially just collection of function pointers – which is what you seem to be looking for.
If you implement a Twitter class that has no properties and that conforms to a protocol, then calling methods on that protocol will dynamically dispatch to the implementations of that instance:
protocol SocialService: class {
func testFunc()
}
class Twitter: SocialService {
func testFunc() {
println("Testing Twitter!")
}
}
func socialServiceForServiceType(serviceType: String) -> SocialService {
return Twitter()
}
let service = socialServiceForServiceType("blah")
// prints "Testing Twitter!"
service.testFunc()
If your concern is that you want to put member variables in the Twitter class, but don’t want the overhead of that for some features, then this probably suggests you want to decompose this functionality into two different classes. Alternatively, if you want a singleton instance (to handle the connectivity for example) then there are other patterns to handle this.
Use simply
func socialServiceForServiceType(serviceType: String) -> SocialService
A protocol can be the return type of a function.
Totally agree with Airspeed Velocity, but I'd like to expand on one of his points:
I'm not sure what you think you're getting from avoiding instances like this. Bear in mind classes don’t need to have member variables, and without them are essentially just collection of function pointers – which is what you seem to be looking for.
I assume you're trying to do something like this:
func socialServiceForServiceType(serviceType: String) -> SocialService.Type
...
let cls = socialServiceForServiceType("twitter")
let conn = cls.connect(user)
Or something like that. You don't need classes to achieve that. You can just return functions.
typealias Connect = User -> Connection
func connectorForServiceType(serviceType: String) -> Connect {
switch serviceType {
case "twitter": return Twitter.Connect
...
}
}
let connect = connectorForServiceType("twitter")
let conn = connect(user)
If you have a whole bundle of functions that you want to package together, just use a struct.
struct ServiceHandlers {
let connect : User -> Connection
let ping : () -> Bool
let name: () -> String
}
func standardPinger(host: String) -> () -> Bool {
return { host in
// perform an ICMP ping and return Bool
}
}
func handlersForServiceType(serviceType: String) -> ServiceHandlers {
switch serviceType {
case "twitter":
return ServiceHandlers(connect: Twitter.connect,
ping: standardPinger("www.twitter.com"),
name: { "Twitter" })
...
}
}
let service = handlersForServiceType("twitter")
let conn = service.connect(user)
In some ways this is duplicative with class methods, but (a) the features you need for class methods aren't implemented, and (b) this is much more flexible. You can return any collection of functions you want; they don't have to all be class methods. It's easier to have default behaviors (which are hard in Swift when you use inheritance). It's easier to extend because you don't necessarily have to extend all the classes (see my use of standardPinger, which is some function I've made up that returns another function; it doesn't have to be a class method).
Breaking free of class/inheritance thinking and just passing around functions can be a major benefit in Swift. Sometimes a struct is better than a protocol.
Use a Factory pattern to achieve the same.
class SocialFactory : NSObject
{
class func socialServiceForServiceType(serviceType: String) -> SocialService?
{
switch serviceType
{
case "Twitter":
return Twitter();
case "Facebook":
return Facebook()
default:
return nil;
}
}
}

Resources