I have made a CNN model to predict number, trained by MNIST data. Using keras wrapper for tensorflow. I am having trouble in predicting my own input data. I have trained the model with epochs =100 and tested model with test set of MNIST which is working fine with accuracy of 97% approx. I have saved this model as 'my_model_conv2d.h5'.
1st Code:
# importing modules
import numpy as np
import keras
import matplotlib.pyplot as plt
from keras.optimizers import SGD
from keras.models import Sequential
from keras.layers import Dense,Activation, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.datasets import mnist
from keras.utils import np_utils
plt.rcParams['figure.figsize'] = (7,7)
#reading MNIST data
(X_train,y_train),(X_test,y_test)=mnist.load_data('mnist.npz')
print X_train.shape, " train datad shape"
print y_train.shape, " labels shape"
#copying data for plotting
test=X_test.copy()
#reshaping data type according to the tensorflow param.
X_train=X_train.reshape(X_train.shape[0],X_train.shape[1],X_train.shape[2],1)
X_test=X_test.reshape(X_test.shape[0],X_test.shape[1],X_test.shape[2],1)
input_shape=(X_train.shape[1],X_train.shape[2],1)
X_train=X_train.astype('float32')
X_test=X_test.astype('float32')
X_train/=255
X_test/=255
# one_hot vector
Y_train=np_utils.to_categorical(y_train,10)
Y_test=np_utils.to_categorical(y_test,10)
print X_train.shape, " train datad shape"
print y_train.shape, " labels shape"
#building CNN model
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
#optimizer type initialization
sgd=SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
#compiling model
model.compile(loss='categorical_crossentropy', optimizer='sgd')
#training model
model.fit(X_train,Y_train, batch_size=128,epochs=100, verbose=1,validation_data=(X_test,Y_test))
#evaluating
score=model.evaluate(X_test,Y_test,verbose=1)
print score, "score"
#predicting classes using MNIST test data
predicted_classes=model.predict_classes(X_test)
print predicted_classes.shape, "predicted_classes.shape"
correct_indices = np.nonzero(predicted_classes == y_test)[0]
incorrect_indices = np.nonzero(predicted_classes != y_test)[0]
#saving model for future use
model.save('my_model_conv2d.h5')
print len(correct_indices), "no . of correct samples"
print len(incorrect_indices), "no . of incorrect samples"
print str((len(incorrect_indices)/float(len(y_test)))*100)+'%', "error percentage"
#plotting graph of predicted test data
plt.figure()
for i, correct in enumerate(correct_indices[:9]):
plt.subplot(3,3,i+1)
plt.imshow(test[correct], cmap='gray', interpolation='none')
plt.title("Predicted {}, Class {}".format(predicted_classes[correct], y_test[correct]))
plt.show()
plt.figure()
for i, incorrect in enumerate(incorrect_indices[:9]):
plt.subplot(3,3,i+1)
plt.imshow(test[incorrect], cmap='gray', interpolation='none')
plt.title("Predicted {}, Class {}".format(predicted_classes[incorrect], y_test[incorrect]))
plt.show()
I have made second python code which opens the model 'my_model_conv2d.h5'. In this code, I have also made an interactive window to draw a number, which is used as an input image for the prediction. I have taken care of background and font color of image and also the size (28,28), approximately it's similar to MNIST data.
2nd Code:
import cv2
import numpy as np
from keras.models import Sequential,load_model
drawing=False
mode=True
#function for mouse events
def interactive_drawing(event,x,y,flags,param):
global ix,iy,drawing, mode
if event==cv2.EVENT_LBUTTONDOWN:
drawing=True
ix,iy=x,y
print "EVENT_LBUTTONDOWN"
elif event==cv2.EVENT_MOUSEMOVE:
if drawing==True:
print "EVENT_MOUSEMOVE"
if mode==True:
print "EVENT_MOUSEMOVE"
cv2.line(img,(ix,iy),(x,y),1,1)
ix=x
iy=y
elif event==cv2.EVENT_LBUTTONUP:
drawing=False
print "EVENT_LBUTTONUP"
if mode==True:
print "EVENT_LBUTTONUP"
cv2.line(img,(ix,iy),(x,y),1,1)
ix=x
iy=y
return x,y
#function for predicting number
def cnn(img):
im=img.copy()
#loading cnn model
model = load_model('my_model_conv2d.h5')
img=img.reshape(1,28,28,1).astype('float32')
#prediction of class using drawn image as an input
predicted_class=model.predict_classes(img)
print predicted_class, "class"
cv2.imwrite('actual=9:predicted='+str(predicted_class)+'.jpg',im*255)
#image same as mnist image
img = np.zeros((28,28), 'float32')
cv2.namedWindow('Drawing_window')
cv2.setMouseCallback('Drawing_window',interactive_drawing)
while(1):
cv2.imshow('Drawing_window',img*255)
k=cv2.waitKey(1)&0xFF
if k==27:
break
cv2.destroyAllWindows()
#calling cnn function for prediction
cnn(img)
Most of the predictions are wrong with my input data. Also, I have made fully connected layer before implementing CNN, but the result was same. So, I tried CNN but the problem is same. I have checked the test data of MNIST in the second code which is working fine. You can check the result here https://drive.google.com/open?id=1E26zinOLrMw7XKhsHd9vnSYoHXzadiJ3 . Please check the image name, name of the image will suggest actual and predicted value.
Where I am doing wrong please suggest.
You need to use the exact same preprocessing applied to the images during training to images during inference.
This is why your program normalizes the train and test data in the same way.
X_train/=255
X_test/=255
This is also true to any other preprocessing you might want to do such as PCA or normalization by z-score.
So make sure that, in your case, your input image is in the range (0,1) by dividing it by 255 (if a range of 0 to 255 is to be expected from that opencv call)
Edit:
I just went ahead and trained the model and tried your program. Indeed it seems to make alot of mistakes (much more that what's to be expected since it got 1% validation error).
My guess is that since mnist is already somewhat preprocessed,
The digits have been size-normalized and centered in a fixed-size
image.
your model might expect your test images to be preprocessed as well.
I would recommend then using some mnist variant with more noise/rotation that might mitigate the problem. Eg: mnist-rot,mnist-back-rand.
Related
I am making an autonomous farming robot for my final year project. I want to move it autonomously in lanes in side the farms. I am just using the raspberry pi image in front of my vehicle. I collect my data through pi and then send it to my computer for training.
Initially i have just trained it for moving in a straight line. As i have not used encoders in my motors so there is a possibility of its being diverging along one direction , so i have to constantly give it the feedback to stay on the right path.
Sample image is as follows, Note this is black and white image :enter image description here
I have 836 images for training and 356 for validation. When i am trying to train it, my model accuracy doesnot improves much. I have tried changing different structures, from fully connected layers to different convolutional layers, my training accuracy doesnot improves much and perhaps most of the times validation accuracy and validation loss remains same.
I am confused that why is this so, is this to do with my code or should i apply computer vision techniques on the image so that features are more prominently visible. What should be the best approach to tackle this problem.
My code is as follows:
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
# fix dimension ordering issue
from keras import backend as K
import numpy as np
import glob
import pandas as pd
from sklearn.model_selection import train_test_split
K.set_image_dim_ordering('th')
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
def load_data(path):
print("Loading training data...")
training_data = glob.glob(path)[0]
data=np.load(training_data)
a=data['train']
b=data['train_labels']
s=np.concatenate((a, b), axis=1)
data=pd.DataFrame(s)
data=data.sample(frac=1)
X = data.iloc[:,:-4]
y=data.iloc[:,-4:]
print("Image array shape: ", X.shape)
print("Label array shape: ", y.shape)
# normalize data
# train validation split, 7:3
return train_test_split(X, y, test_size=0.3)
data_path = "*.npz"
X_train,X_test,y_train,y_test=load_data(data_path)
# reshape to be [samples][channels][width][height]
X_train = X_train.values.reshape(X_train.shape[0], 1, 120, 320).astype('float32')
X_test = X_test.values.reshape(X_test.shape[0], 1, 120, 320).astype('float32')
# normalize inputs from 0-255 to 0-1
X_train = X_train / 255.0
X_test = X_test / 255.0
# one hot encode outputs
num_classes = y_test.shape[1]
# define a simple CNN model
def baseline_model():
model = Sequential()
model.add(Conv2D(30, (5, 5), input_shape=(1, 120, 320), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(15, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# build the model
model = baseline_model()
# Fit the model
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=10)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("CNN Error: %.2f%%" % (100-scores[1]*100))
sample output: This is the best output and it is of the above code:
enter image description here
I solved this problem by changing the structure of my algorithm and using NVIDIA's deep learning car algorithm to solve this problem. The algorithm is very robust and applies basic computer vision also on it. You can easily find sample implementation for toy cars on medium/youtube also.
this article was really helpful for me:
https://towardsdatascience.com/deeppicar-part-1-102e03c83f2c
additionally this resource was also very helpful:
https://zhengludwig.wordpress.com/projects/self-driving-rc-car/
I am trying to build a model to predict house prices.
I have some features X (no. of bathrooms , etc.) and target Y (ranging around $300,000 to $800,000)
I have used sklearn's Standard Scaler to standardize Y before fitting it to the model.
Here is my Keras model:
def build_model():
model = Sequential()
model.add(Dense(36, input_dim=36, activation='relu'))
model.add(Dense(18, input_dim=36, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='mse', optimizer='sgd', metrics=['mae','mse'])
return model
I am having trouble trying to interpret the results -- what does a MSE of 0.617454319755 mean?
Do I have to inverse transform this number, and square root the results, getting an error rate of 741.55 in dollars?
math.sqrt(sc.inverse_transform([mse]))
I apologise for sounding silly as I am starting out!
I apologise for sounding silly as I am starting out!
Do not; this is a subtle issue of great importance, which is usually (and regrettably) omitted in tutorials and introductory expositions.
Unfortunately, it is not as simple as taking the square root of the inverse-transformed MSE, but it is not that complicated either; essentially what you have to do is:
Transform back your predictions to the initial scale of the original data
Get the MSE between these invert-transformed predictions and the original data
Take the square root of the result
in order to get a performance indicator of your model that will be meaningful in the business context of your problem (e.g. US dollars here).
Let's see a quick example with toy data, omitting the model itself (which is irrelevant here, and in fact can be any regression model - not only a Keras one):
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
import numpy as np
# toy data
X = np.array([[1,2], [3,4], [5,6], [7,8], [9,10]])
Y = np.array([3, 4, 5, 6, 7])
# feature scaling
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X)
# outcome scaling:
sc_Y = StandardScaler()
Y_train = sc_Y.fit_transform(Y.reshape(-1, 1))
Y_train
# array([[-1.41421356],
# [-0.70710678],
# [ 0. ],
# [ 0.70710678],
# [ 1.41421356]])
Now, let's say that we fit our Keras model (not shown here) using the scaled sets X_train and Y_train, and get predictions on the training set:
prediction = model.predict(X_train) # scaled inputs here
print(prediction)
# [-1.4687586 -0.6596055 0.14954728 0.95870024 1.001172 ]
The MSE reported by Keras is actually the scaled MSE, i.e.:
MSE_scaled = mean_squared_error(Y_train, prediction)
MSE_scaled
# 0.052299712818541934
while the 3 steps I have described above are simply:
MSE = mean_squared_error(Y, sc_Y.inverse_transform(prediction)) # first 2 steps, combined
MSE
# 0.10459946572909758
np.sqrt(MSE) # 3rd step
# 0.323418406602187
So, in our case, if our initial Y were US dollars, the actual error in the same units (dollars) would be 0.32 (dollars).
Notice how the naive approach of inverse-transforming the scaled MSE would give a very different (and incorrect) result:
np.sqrt(sc_Y.inverse_transform([MSE_scaled]))
# array([2.25254588])
MSE is mean square error, here is the formula.
Basically it is a mean of square of different of expected output and prediction. Making square root of this will not give you the difference between error and output. This is useful for training.
Currently you have build a model.
If you want to train the model use these function.
mode.fit(x=input_x_array, y=input_y_array, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None)
If you want to do prediction of the output you should use following code.
prediction = model.predict(np.array(input_x_array))
print(prediction)
You can find more details here.
https://keras.io/models/about-keras-models/
https://keras.io/models/sequential/
This question already has an answer here:
Multi-dimensional input layers in Keras
(1 answer)
Closed 5 years ago.
I'm attempting to train a model of 3 layer Dense Neural Network using Keras with a GPU enabled Tensorflow backend.
The dataset I have is 4 million 20x40px images that I placed in directories with the name of the category they belong to.
Because of the large amount of data I can't just load it all into RAM and feed it to my model so I thought using Keras's ImageDataGenerator, specifically the function flow_from_directory() would do the trick. This yields a tuple of (x, y) where x is the numpy array of the image and y is the label of the image.
I expected the model to know to access the numpy array to be given as input for my model so I setup my input shape to be: (None,20,40,3) where None is the batch size, 20 and 40 are size of the image and 3 are the number of channels in the image. This does not work however as when I try to train my model I keep getting the error:
ValueError: Error when checking target: expected dense_3 to have 4 dimensions, but got array with shape (1024, 2)
I know the cause is that it is getting the tuple from flow_from_directoy and I guess I could change the input shape to match, however, I fear that this would render my model useless as I will be using images to make predictions not a pre-categorized tuple. So my question is, how can I get flow_from_directory to feed the image to my model and only use the tuple to validate it's training? Am I misunderstanding something here?
For reference, here is my code:
from keras.models import Model
from keras.layers import *
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import TensorBoard
# Prepare the Image Data Generator.
train_datagen = ImageDataGenerator()
test_datagen = ImageDataGenerator()
train_generator = train_datagen.flow_from_directory(
'/path/to/train_data/',
target_size=(20, 40),
batch_size=1024,
)
test_generator = test_datagen.flow_from_directory(
'/path/to/test_data/',
target_size=(20, 40),
batch_size=1024,
)
# Define input tensor.
input_t = Input(shape=(20,40,3))
# Now create the layers and pass the input tensor to it.
hidden_1 = Dense(units=32, activation='relu')(input_t)
hidden_2 = Dense(units=16)(hidden_1)
prediction = Dense(units=1)(hidden_2)
# Now put it all together and create the model.
model = Model(inputs=input_t, outputs=prediction)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
# Prepare Tensorboard callback and start training.
tensorboard = TensorBoard(log_dir='./graph', histogram_freq=0, write_graph=True, write_images=True)
print(test_generator)
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=100,
validation_data=test_generator,
validation_steps=800,
callbacks=[tensorboard]
)
# Save trained model.
model.save('trained_model.h5')
Your input shape is wrong for Dense layers.
Dense layers expect inputs in the shape (None,length).
You'll either need to reshape your inputs so that they become vectors:
imageBatch=imageBatch.reshape((imageBatch.shape[0],20*40*3))
Or use convolutional layers, that expect that type of input shape (None,nRows,nCols,nChannels) like in tensorflow.
I am trying to use the keras frontend with tensorflow backend for a simple autoencoder as a multidimensional scaling technique to plot multidimensional data into 2 dimensions. Many times when I run it (not sure how to set random seed for keras btw) one of the dimensions is collapsed to yield a 1 dimensional embedding (the plot should help explain). Why is this happening? How can I make sure the dimensions are preserved and utilized by the autoencoder? I realize this is the most simple and basic form of an autoencoder that I have implemented but I would like to build on this to make better autoencoders for this task.
from sklearn.datasets import load_iris
from sklearn import model_selection
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Load data
X = load_iris().data
Y = pd.get_dummies(load_iris().target).as_matrix()
X_tr, X_te, Y_tr, Y_te = model_selection.train_test_split(X,Y, test_size=0.3, stratify=Y.argmax(axis=1))
dims = X_tr.shape[1]
n_classes = Y_tr.shape[1]
# Autoencoder
encoding_dim = 2
# this is our input placeholder
input_data = tf.keras.Input(shape=(4,))
# "encoded" is the encoded representation of the input
encoded = tf.keras.layers.Dense(encoding_dim,
activation='relu',
)(input_data)
# "decoded" is the lossy reconstruction of the input
decoded = tf.keras.layers.Dense(4, activation='sigmoid')(encoded)
# this model maps an input to its reconstruction
autoencoder = tf.keras.models.Model(input_data, decoded)
# this model maps an input to its encoded representation
encoder = tf.keras.models.Model(input_data, encoded)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
network_training = autoencoder.fit(X_tr, X_tr,
epochs=100,
batch_size=5,
shuffle=True,
verbose=False,
validation_data=(X_te, X_te))
# Plot data
embeddings = encoder.predict(X_te)
plt.scatter(embeddings[:,0], embeddings[:,1], c=Y_te.argmax(axis=1), edgecolor="black", linewidth=1)
Run algorithm once
Run algorithm again
I am trying to train LSTM, but while training accuracy remains zero in each epoch.
I have transformed data to multivariate Time-series data and also shape in three-dimensional shape.
I also have normalised data using minmaxsaller.
I have tried on a number of the epoch from 5 to 50 and batch size from 25 to 200.
I have tried data samples from 1000000 to 1000 but none is working.
Every time I am getting training accuracy zero only.
Can anyone help me in understanding it or suggest some more experiments.
Following is my network.
from keras.layers.core import Dense,Activation,Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras.layers import Flatten
model = Sequential()
model.add(LSTM(50,return_sequences=True, input_shape=(X_train_values.shape[1], X_train_values.shape[2])))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(1))
model.add(Activation('linear'))
model.compile(loss='mse',optimizer='rmsprop',metrics=['accuracy'])
history = model.fit(X_train_values, y_train.values,epochs=25, batch_size=30, verbose=2, shuffle=False)
me too, I'm a student from china, when I train LSTM model, the model's accuracy is very close zeros, but predicted answer and test collections is very close.
enter image description here
enter image description here