BigQueryIO Read performance using withTemplateCompatibility - google-cloud-dataflow

Apache Beam 2.1.0 had a bug with template pipelines that read from BigQuery which meant they could only be executed once. More details here https://issues.apache.org/jira/browse/BEAM-2058
This has been fixed with the release of Beam 2.2.0, you can now read from BigQuery using the withTemplateCompatibility option, your template pipeline can now be run multiple times.
pipeline
.apply("Read rows from table."
, BigQueryIO.readTableRows()
.withTemplateCompatibility()
.from("<your-table>")
.withoutValidation())
This implementation seems to come with a huge performance cost to BigQueryIO read operation, I now have batch pipelines what ran in 8-11 minutes now consistently taking 45-50 minutes to complete. The only difference between both pipelines is the .withTemplateCompatibility().
Am trying to understand the reasons for the huge drop in performance and if there is any way to improve them.
Thanks.
Solution: based on jkff's input.
pipeline
.apply("Read rows from table."
, BigQueryIO.readTableRows()
.withTemplateCompatibility()
.from("<your-table>")
.withoutValidation())
.apply("Reshuffle", Reshuffle.viaRandomKey())

I suspect this is due to the fact that withTemplateCompatibility comes at the cost of disabling dynamic rebalancing for this read step.
I would expect it to have significant impact only if you're reading a small or moderate amount of data, but performing very heavy processing on it. In this case, try adding a Reshuffle.viaRandomKey() onto your BigQueryIO.read(). It will materialize a temporary copy of the data, but will parallelize downstream processing much better.

Related

How can I debug why my Dataflow job is stuck?

I have a Dataflow job that is not making progress - or it is making very slow progress, and I do not know why. How can I start looking into why the job is slow / stuck?
The first resource that you should check is Dataflow documentation. It should be useful to check these:
Troubleshooting your Pipeline
Common error guidance
If these resources don't help, I'll try to summarize some reasons why your job may be stuck, and how you can debug it. I'll separate these issues depending on which part of the system is causing the trouble. Your job may be:
Job stuck at startup
A job can get stuck being received by the Dataflow service, or starting up new Dataflow workers. Some risk factors for this are:
Did you add a custom setup.py file?
Do you have any dependencies that require a special setup on worker startup?
Are you manipulating the worker container?
To debug this sort of issue I usually open StackDriver logging, and look for worker-startup logs (see next figure). These logs are written by the worker as it starts up a docker container with your code, and your dependencies. If you see any problem here, it would indicate an issue with your setup.py, your job submission, staged artifacts, etc.
Another thing you can do is to keep the same setup, and run a very small pipeline that stages everything:
with beam.Pipeline(...) as p:
(p
| beam.Create(['test element'])
| beam.Map(lambda x: logging.info(x)))
If you don't see your logs in StackDriver, then you can continue to debug your setup. If you do see the log in StackDriver, then your job may be stuck somewhere else.
Job seems stuck in user code
Something else that could happen is that your job is performing some operation in user code that is stuck or slow. Some risk factors for this are:
Is your job performing operations that require you to wait for them? (e.g. loading data to an external service, waiting for promises/futures)
Note that some of the builtin transforms of Beam do exactly this (e.g. the Beam IOs like BigQueryIO, FileIO, etc).
Is your job loading very large side inputs into memory? This may happen if you are using View.AsList for a side input.
Is your job loading very large iterables after GroupByKey operations?
A symptom of this kind of issue can be that the pipeline's throughput is lower than you would expect. Another symptom is seeing the following line in the logs:
Processing stuck in step <STEP_NAME>/<...>/<...> for at least <TIME> without outputting or completing in state <STATE>
.... <a stacktrace> ....
In cases like these it makes sense to look at which step is consuming the most time in your pipeline, and inspect the code for that step, to see what may be the problem.
Some tips:
Very large side inputs can be troublesome, so if your pipeline relies on accessing a very large side input, you may need to redesign it to avoid that bottleneck.
It is possible to have asynchronous requests to external services, but I recommend that you commit / finalize work on startBundle and finishBundle calls.
If your pipeline's throughput is not what you would normally expect, it may be because you don't have enough parallelism. This can be fixed by a Reshuffle, or by sharding your existing keys into subkeys (Beam often does processing per-key, and so if you have too few keys, your parallelism will be low) - or using a Combiner instead of GroupByKey + ParDo.
Another reason that your throughput is low may be that your job is waiting too long on external calls. You can try addressing this by trying out batching strategies, or async IO.
In general, there's no silver bullet to improve your pipeline's throughput,and you'll need to have experimentation.
The data freshness or system lag are increasing
First of all, I'd recommend you check out this presentation on watermarks.
For streaming, the advance of the watermarks is what drives the pipeline to make progress, thus, it is important to be watchful of things that could cause the watermark to be held back, and stall your pipeline downstream. Some reasons why the watermark may become stuck:
One possibility is that your pipeline is hitting an unresolvable error condition. When a bundle fails processing, your pipeline will continue to attempt to execute that bundle indefinitely, and this will hold the watermark back.
When this happens, you will see errors in your Dataflow console, and the count will keep climbing as the bundle is retried. See:
You may have a bug when associating the timestamps to your data. Make sure that the resolution of your timestamp data is the correct one!
Although unlikely, it is possible that you've hit a bug in Dataflow. If neither of the other tips helps, please open a support ticket.

Apache Beam/Dataflow Reshuffle

What is the purpose of org.apache.beam.sdk.transforms.Reshuffle? In the documentation the purpose is defined as:
A PTransform that returns a PCollection equivalent to its input but
operationally provides some of the side effects of a GroupByKey, in
particular preventing fusion of the surrounding transforms,
checkpointing and deduplication by id.
What is the benefit of preventing fusion of the surrounding transforms? I thought fusion is an optimization to prevent unnecessarily steps. Actual use case would be helpful.
There are a couple cases when you may want to reshuffle your data. The following is not an exhaustive list, but should give you and idea about why you may reshuffle:
When one of your ParDo transforms has a very high fanout
This means that the parallelism is increased after your ParDo. If you don't break the fusion here, your pipeline will not be able to split data into multiple machines to process it.
Consider the extreme case of a DoFn that generates a million output elements for every input element. Consider that this ParDo receives 10 elements in its input. If you don't break fusion between this high-fanout ParDo and its downstream transforms, it will only be able to run on 10 machines, although you will have millions of elements.
A good way to diagnose this is looking at the number of elements in an input PCollection vs the number of elements of an output PCollection. If the latter is significantly larger than the first, then you may want to consider adding a reshuffle.
When your data is not well balanced across machines**
Imagine that your pipeline consumes 9 files of 10MB and one file of 10GB. If each file is read by a single machine, you will have one machine with a lot more data than the others.
If you don't reshuffle this data, most of your machines will be idle while your pipeline runs. Reshuffling it allows you to rebalance the data to be processed more evenly across machines.
A good way to diagnose this is by looking at how many workers are executing work in your pipeline. If the pipeline is slow, and there is only one worker processing data, then you can benefit from a reshuffle.

Debugging slow reads from BigQuery on Google Cloud Dataflow

Background:
We have a really simple pipeline which reads some data from BigQuery (usually ~300MB) filters/transforms it and puts it back to BigQuery. in 99% of cases this pipeline finishes in 7-10minutes and is then restarted again to process a new batch.
Problem:
Recently, the job has started to take >3h once in a while, maybe 2 times in a month out of 2000 runs. When I look at the logs, I can't see any errors and in fact it's only the first step (read from BigQuery) that is taking so long.
Does anyone have a suggestion on how to approach debugging of such cases? Especially since it's really the read from BQ and not any of our transformation code. We are using Apache Beam SDK for Python 0.6.0 (maybe that's the reason!?)
Is it maybe possible to define a timeout for the job?
This is an issue on either Dataflow side or BigQuery side depending on how one looks at it. When splitting the data for parallel processing, Dataflow relies on an estimate of the data size. The long runtime happens when BigQuery sporadically gives a severe under-estimate of the query result size, and Dataflow, as a consequence, severely over-splits the data and the runtime becomes bottlenecked by the overhead of reading lots and lots of tiny file chunks exported by BigQuery.
On one hand, this is the first time I've seen BigQuery produce such dramatically incorrect query result size estimates. However, as size estimates are inherently best-effort and can in general be arbitrarily off, Dataflow should control for that and prevent such oversplitting. We'll investigate and fix this.
The only workaround that comes to mind meanwhile is to use the Java SDK: it uses quite different code for reading from BigQuery that, as far as I recall, does not rely on query size estimates.

Dataflow OutOfMemoryError while reading small tables from BigQuery

We have a pipeline reading data from BigQuery and processing historical data for various calendar years. It fails with OutOfMemoryError errors if the input data is small (~500MB)
On startup it reads from BigQuery about 10.000 elements/sec, after short time it slows down to hundreds elements/s then it hangs completely.
Observing 'Elements Added' on the next processing step (BQImportAndCompute), the value increases and then decreases again. That looks to me like some already loaded data is dropped and then loaded again.
Stackdriver Logging console contains errors with various stack traces that contain java.lang.OutOfMemoryError, for example:
Error reporting workitem progress update to Dataflow service:
"java.lang.OutOfMemoryError: Java heap space
at com.google.cloud.dataflow.sdk.runners.worker.BigQueryAvroReader$BigQueryAvroFileIterator.getProgress(BigQueryAvroReader.java:145)
at com.google.cloud.dataflow.sdk.util.common.worker.ReadOperation$SynchronizedReaderIterator.setProgressFromIteratorConcurrent(ReadOperation.java:397)
at com.google.cloud.dataflow.sdk.util.common.worker.ReadOperation$SynchronizedReaderIterator.setProgressFromIterator(ReadOperation.java:389)
at com.google.cloud.dataflow.sdk.util.common.worker.ReadOperation$1.run(ReadOperation.java:206)
I would suspect that there is a problem with topology of the pipe, but running the same pipeline
locally with DirectPipelineRunner works fine
in cloud with DataflowPipelineRunner on large dataset (5GB, for another year) works fine
I assume problem is how Dataflow parallelizes and distributes work in the pipeline. Are there any possibilities to inspect or influence it?
The problem here doesn't seem to be related to the size of the BigQuery table, but likely the number of BigQuery sources being used and the rest of the pipeline.
Instead of reading from multiple BigQuery sources and flattening them have you tried reading from a query that pulls in all the information? Doing that in a single step should simplify the pipeline and also allow BigQuery to execute better (one query against multiple tables vs. multiple queries against individual tables).
Another possible problem is if there is a high degree of fan-out within or after the BQImportAndCompute operation. Depending on the computation being done there, you may be able to reduce the fan-out using clever CombineFns or WindowFns. If you want help figuring out how to improve that path, please share more details about what is happening after the BQImportAndCompute.
Have you tried debugging with Stackdriver?
https://cloud.google.com/blog/big-data/2016/04/debugging-data-transformations-using-cloud-dataflow-and-stackdriver-debugger

How do I make sure my Dataflow pipeline scales?

We've often seen people write Dataflow pipelines that don't scale well. This is frustrating since Dataflow is meant to scale transparently, but there still are some antipatterns in Dataflow pipelines that make it difficult to scale. What are some common antipatterns and tips for avoiding them?
Scaling Your Dataflow Pipeline
Hi, Reuven Lax here. I’m a member of the Dataflow engineering team, where I lead the design and implementation of our streaming runner. Prior to Dataflow I led the team that built MillWheel for a number of years. MillWheel was described in this VLDB 2013 paper, and is the basis for the streaming technology underlying Dataflow.
Dataflow usually removes the need for you to think too much about how to make a pipeline scale. A lot of work has gone into sophisticated algorithms that can automatically parallelize and tune your pipeline across many machines. However as with any such system, there are some anti-patterns that can bottleneck your pipeline at scale. In this post we will go over three of these anti-patterns, and discuss how to address them. It’s assumed that you are already familiar with the Dataflow programming model. If not, I recommend beginning with our Getting Started guide and Tyler Akidau’s Streaming 101 and Streaming 102 blog posts. You may also read the Dataflow model paper published in VLDB 2015.
Today we’re going to talk about scaling your pipeline - or more specifically, why your pipeline might not scale. When we say scalability, we mean the ability of the pipeline to operate efficiently as input size increases and key distribution changes. The scenario: you’ve written a cool new Dataflow pipeline, which the high-level operations we provide made easy to write. You’ve tested this pipeline locally on your machine using DirectPipelineRunner and everything looks fine. You’ve even tried deploying it on a small number of Compute VMs, and things still look rosy. Then you try and scale up to a larger data volume, and the picture becomes decidedly worse. For a batch pipeline, it takes far longer than expected for the pipeline to complete. For a streaming pipeline, the lag reported in the Dataflow UI keeps increasing as the pipeline falls further and further behind. We’re going to explain some reasons this might happen, and how to address them.
Expensive Per-Record Operations
One common problem we see is pipelines that perform needlessly expensive or slow operations for each record processed. Technically this isn’t a hard scaling bottleneck - given enough resources, Dataflow can still distribute this pipeline on enough machines to make it perform well. However when running over many millions or billions of records, the cost of these per-record operations adds up to an unexpectedly-large number. Usually these problems aren’t noticeable at all at lower scale.
Here’s an example of one such operation, taken from a real Dataflow pipeline.
import javax.json.Json;
...
PCollection<OutType> output = input.apply(ParDo.of(new DoFn<InType, OutType>() {
public void processElement(ProcessContext c) {
JsonReader reader = Json.createReader();
// Perform some processing on entry.
...
}
}));
At first glance it’s not obvious that anything is wrong with this code, yet when run at scale this pipeline ran extremely slowly.
Since the actual business logic of our code shouldn't have caused a slowdown, we suspected that something was adding per-record overhead to our pipeline. To get more information on this, we had to ssh to the VMs to get actual thread profiles from workers. After a bit of digging, we found threads were often stuck in the following stack trace:
java.util.zip.ZipFile.getEntry(ZipFile.java:308)
java.util.jar.JarFile.getEntry(JarFile.java:240)
java.util.jar.JarFile.getJarEntry(JarFile.java:223)
sun.misc.URLClassPath$JarLoader.getResource(URLClassPath.java:1005)
sun.misc.URLClassPath$JarLoader.findResource(URLClassPath.java:983)
sun.misc.URLClassPath$1.next(URLClassPath.java:240)
sun.misc.URLClassPath$1.hasMoreElements(URLClassPath.java:250)
java.net.URLClassLoader$3$1.run(URLClassLoader.java:601)
java.net.URLClassLoader$3$1.run(URLClassLoader.java:599)
java.security.AccessController.doPrivileged(Native Method)
java.net.URLClassLoader$3.next(URLClassLoader.java:598)
java.net.URLClassLoader$3.hasMoreElements(URLClassLoader.java:623)
sun.misc.CompoundEnumeration.next(CompoundEnumeration.java:45)
sun.misc.CompoundEnumeration.hasMoreElements(CompoundEnumeration.java:54)
java.util.ServiceLoader$LazyIterator.hasNextService(ServiceLoader.java:354)
java.util.ServiceLoader$LazyIterator.hasNext(ServiceLoader.java:393)
java.util.ServiceLoader$1.hasNext(ServiceLoader.java:474)
javax.json.spi.JsonProvider.provider(JsonProvider.java:89)
javax.json.Json.createReader(Json.java:208)
<.....>.processElement(<filename>.java:174)
Each call to Json.createReader was searching the classpath trying to find a registered JsonProvider. As you can see from the stack trace, this involves loading and unzipping JAR files. Doing this per record on a high-scale pipeline is not likely to perform very well!
The solution here was for the user to create a static JsonReaderFactory and use that to instantiate the individual reader objects. You might be tempted to create a JsonReaderFactory per bundle of records instead, inside Dataflow’s startBundle method. However, while this will work well for a batch pipeline, in streaming mode the bundles may be very small - sometimes just a few records. As a result, we don’t recommend doing expensive work per bundle either. Even if you believe your pipeline will only be used in batch mode, you may in the future want to run it as a streaming pipeline. So future-proof your pipelines, by making sure they’ll work well in either mode!
Hot Keys
A fundamental primitive in Dataflow is GroupByKey. GroupByKey allows one to group a PCollection of key-value pairs so that all values for a specific key are grouped together to be processed as a unit. Most of Dataflow’s built-in aggregating transforms - Count, Top, Combine, etc. - use GroupByKey under the cover. You might have a hot key problem if a single worker is extremely busy (e.g. high CPU use determined by looking at the set of GCE workers for the job) while other workers are idle, yet the pipeline falls farther and farther behind.
The DoFn that processes the result of a GroupByKey is given an input type of KV<KeyType, Iterable<ValueType>>. This means that the entire set of all values for that key (within the current window if using windowing) is modeled as a single Iterable element. In particular, this means that all values for that key must be processed on the same machine, in fact on the same thread. Performance problems can occur in the presence of hot keys - when one or more keys receive data faster than can be processed on a single cpu. For example, consider the following code snippet
p.apply(Read.from(new UserWebEventSource())
.apply(new ExtractBrowserString())
.apply(Window.<Event>into(FixedWindow.of(1, Duration.standardSeconds(1))))
.apply(GroupByKey.<String, Event>create())
.apply(ParDo.of(new ProcessEventsByBrowser()));
This code keys all user events by the user’s web browser, and then processes all events for each browser as a unit. However there is a small number of very popular browsers (such as Chrome, IE, Firefox, Safari), and those keys will be very hot - possibly too hot to process on one CPU. In addition to performance, this is also a scalability bottleneck. Adding more workers to the pipeline will not help if there are four hot keys, since those keys can processed on at most four workers. You’ve structured your pipeline so that Dataflow can’t scale it up without violating the API contract.
One way to alleviate this is to structure the ProcessEventsByBrowser DoFn as a combiner. A combiner is a special type of user function that allows piecewise processing of the iterable. For example, if the goal was to count the number of events per browser per second, Count.perKey() can be used instead of a ParDo. Dataflow is able to lift part of the combining operation above the GroupByKey, which allows for more parallelism (for those of you coming from the Database world, this is similar to pushing a predicate down); some of the work can be done in a previous stage which hopefully is better distributed.
Unfortunately, while using a combiner often helps, it may not be enough - especially if the hot keys are very hot; this is especially true for streaming pipelines. You might also see this when using the global variants of combine (Combine.globally(), Count.globally(), Top.largest(), among others.). Under the covers these operations are performing a per-key combine on a single static key, and may not perform well if the volume to this key is too high. To address this we allow you to provide extra parallelism hints using the Combine.PerKey.withHotKeyFanout or Combine.Globally.withFanout. These operations will create an extra step in your pipeline to pre-aggregate the data on many machines before performing the final aggregation on the target machines. There's no magic number for these operations, but the general strategy would be to split any hot key into enough sub-shards so that any single shard is well under the per-worker throughput that your pipeline can sustain.
Large Windows
Dataflow provides a sophisticated windowing facility for bucketing data according to time. This is most useful in streaming pipelines when processing unbounded data, however, it is fully supported for batch, bounded pipelines as well. When a windowing strategy has been attached to a PCollection, any subsequent grouping operation (most notably GroupByKey) performs a separate grouping per window. Unlike other systems that provide only globally-synchronized windows, Dataflow windows the data for each key separately. This is what us to provide flexible per-key windows such as sessions. For more information, I recommend that you read the windowing guide in the Dataflow documentation.
As a consequence of the fact that windows are per key, Dataflow buffers elements on the receiver side while waiting for each window to close. If using very-long windows - e.g. a 24-hour fixed window - this means that a lot of data has to be buffered, which can be a performance bottleneck for the pipeline. This can manifest as slowness (like for hot keys), or even as out of memory errors on the workers (visible in the logs). We again recommend using combiners to reduce the data size. The difference between writing this:
pcollection.apply(Window.into(FixedWindows.of(1, TimeUnit.DAYS)))
.apply(GroupByKey.<KeyType, ValueType>create())
.apply(ParDo.of(new DoFn<KV<KeyType, Iterable<ValueType>>, Long>() {
public void processElement(ProcessContext c) {
c.output(c.element().size());
}
}));
… and this ...
pcollection.apply(Window.into(FixedWindows.of(1, TimeUnit.DAYS)))
.apply(Count.perKey());
… isn’t just brevity. In the latter snippet Dataflow knows that a count combiner is being applied, and so only needs to store the count so far for each key, no matter how long the window is. In contrast, Dataflow understands less about the first snippet of code and is forced to buffer an entire day’s worth of data on receivers, even though the two snippets are logically equivalent!
If it’s impossible to express your operation as a combiner, then we recommend looking at the triggers API. This will allow you to optimistically process portions of the window before the window closes, and so reduce the size of buffered data.
Note that many of these limitations do not apply to the batch runner. However as mentioned above, you're always better off future proofing your pipeline and making sure it runs well in both modes.
We've talked about hot keys, large windows, and expensive per-record operations. Other guidance can be found in our documentation. Although this post has focused on challenges you may encounter with scaling your pipeline, there are many benefits to Dataflow that are largely transparent -- things like dynamic work rebalancing to minimize straggler effects, throughput-based autoscaling, and job resource management adapt to many different pipeline and data shapes without user intervention. We're always trying to make our system more adaptive, and plan to automatically incorporate some of the above strategies into the core execution engine over time. Thanks for reading, and happy Dataflowing!

Resources