It seems that GridSearchCV of scikit-learn collects the scores of its (inner) cross-validation folds and then averages across the scores of all folds. I was wondering about the rationale behind this. At first glance, it would seem more flexible to instead collect the predictions of its cross-validation folds and then apply the chosen scoring metric to the predictions of all folds.
The reason I stumbled upon this is that I use GridSearchCV on an imbalanced data set with cv=LeaveOneOut() and scoring='balanced_accuracy' (scikit-learn v0.20.dev0). It doesn't make sense to apply a scoring metric such as balanced accuracy (or recall) to each left-out sample. Rather, I would want to collect all predictions first and then apply my scoring metric once to all predictions. Or does this involve an error in reasoning?
Update: I solved it by creating a custom grid search class based on GridSearchCV with the difference that predictions are first collected from all inner folds and the scoring metric is applied once.
GridSearchCVuses the scoring to decide what internal hyperparameters to set in the model.
If you want to estimate the performance of the "optimal" hyperparameters, you need to do an additional step of cross validation.
See http://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
EDIT to get closer to answering the actual question:
For me it seems reasonable to collect predictions for each fold and then score them all, if you want to use LeaveOneOut and balanced_accuracy. I guess you need to make your own grid searcher to do that. You could use model_selection.ParameterGrid and model_selection.KFold for that.
Related
As I learned about cross-validation algorithm, from most of the articles on the web, there are variety of cross-validation methods. Here I want to be clear about the k-fold cross-validation technique.
In the k-fold cross-validation algorithm, we can split the training set in to k not-overlapped folds.
As we split the training data in to k folds, we have to train the model in k iterations.
So, in each iteration, we train the model with (k-1) folds and validate it with the remained fold.
In each split we can calculate the desired metric(s) of our model.
At the end we can report the training error by taking the average of scores of all iterations.
But what is the final trained model?
Some points in those articles are not clear for me?
Should I initiate model's parameters in each iteration?
I ask this, because if I don’t initialize the parameter's it could save the pattern of data which I want to be unseen in the next iteration and so on…
Should I save the initial parameter of the split in which I gained the best score, as the best initial values of the parameters?
Should I retrain the model initiating it with the initial values of the parameters gained in my second question and then feed it with whole training dataset and gain the final trained model?
Alright so before answering your question I will go a bit back to explain the purpose of cross validation and model evaluation. You can read these slides or research more about statistical learning theory if you want to go deeper.
Train/test split
Suppose you have a model with defined hyperparameter (or none) and you train it on the training split. If you calculate the metrics over the test split, this will give you the risk of the model on new data. Then you know that this particular model will perform like that on unseen data.
So we have a learning process B, that takes a dataset S (here the training dataset) as well as hyperparameters h, and gives a fitted model m; then B(S, h)->m (training B on S with hp h gives a model m, with its parameters). Then we tested this model to evaluate the risk R on the test dataset.
k-fold Cross validation
When doing k-fold cross validation, you fit k models using the learning process B. Each model is fitted on a different training set, and the risk is computed on non overlapping samples.
Then, you calculate the mean risk among the folds. A common mistake is that it gives you the performance of the model, that's not true. This gives you the mean (or expected) performances of the learning process B (and hyperparams h). That means, if you train a new model using B (and hyperparams h), its expected performance will be around the calculated metrics (of course this is not always true).
For your questions
Yes you should train the model from scratch, if possible with the same initial parameters (if initialization is not random) to avoid any difference between folds. Using a warm start with the previous parameters can modify the learning process, and the fitting.
No, if initialization is random let it be, if it is fixed use the same initial parameters for all folds
For the two previous questions, if by initial parameters you meant hyperparameters, then you should keep the same for all folds, otherwise the calculated risk will be useless. If you want to try multiple hyperparameters, you have to repeat the cross validation multiple times, and then you can select the best ones based on the risk calculated.
Once you tuned your hyperparameters you can train the model on your whole training set. This will give you a model m. Before your cross validation you can keep a small test split to evaluate this final model on unseen data
I trying to learn about decision trees (and other models) and I came across cross validation, now I first thought that cross validation was used to determine the optimal parameters for the model. For example the optimal max_tree_depth in decision tree classification or the optimal number_of_neighbors in k_nearest_neighbor classification. But as I am looking at some examples I think this might be wrong.
Is this wrong?
Cross-validation is used to determine the accuracy of your model in a more accurate way for example in a n-fold cross validation you divide you data into n partitions and use n-1 parts as train set and 1 part as test set and repeat this for all partitions each partition gets to be test set once) then you average results to get a better estimation of your model's accuracy
I am interested in any tips on how to train a set with a very limited positive set and a large negative set.
I have about 40 positive examples (quite lengthy articles about a particular topic), and about 19,000 negative samples (most drawn from the sci-kit learn newsgroups dataset). I also have about 1,000,000 tweets that I could work with.. negative about the topic I am trying to train on. Is the size of the negative set versus the positive going to negatively influence training a classifier?
I would like to use cross-validation in sci-kit learn. Do I need to break this into train / test-dev / test sets? Is know there are some pre-built libraries in sci-kit. Any implementation examples that you recommend or have used previously would be helpful.
Thanks!
The answer to your first question is yes, the amount by which it will affect your results depends on the algorithm. My advive would be to keep an eye on the class-based statistics such as recall and precision (found in classification_report).
For RandomForest() you can look at this thread which discusses
the sample weight parameter. In general sample_weight is what
you're looking for in scikit-learn.
For SVM's have a look at either this example or this
example.
For NB classifiers, this should be handled implicitly by Bayes
rule, however in practice you may see some poor performances.
For you second question it's up for discussion, personally I break my data into a training and test split, perform cross validation on the training set for parameter estimation, retrain on all the training data and then test on my test set. However the amount of data you have may influence the way you split your data (more data means more options).
You could probably use Random Forest for your classification problem. There are basically 3 parameters to deal with data imbalance. Class Weight, Samplesize and Cutoff.
Class Weight-The higher the weight a class is given, the more its error rate is decreased.
Samplesize- Oversample the minority class to improve class imbalance while sampling the defects for each tree[not sure if Sci-kit supports this, used to be param in R)
Cutoff- If >x% trees vote for the minority class, classify it as minority class. By default x is 1/2 in Random forest for 2-class problem. You can set it to a lower value for the minority class.
Check out balancing predict error at https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
For the 2nd question if you are using Random Forest, you do not need to keep separate train/validation/test set. Random Forest does not choose any parameters based on a validation set, so validation set is un-necessary.
Also during the training of Random Forest, the data for training each individual tree is obtained by sampling by replacement from the training data, thus each training sample is not used for roughly 1/3 of the trees. We can use the votes of these 1/3 trees to predict the out of box probability of the Random forest classification. Thus with OOB accuracy you just need a training set, and not validation or test data to predict performance on unseen data. Check Out of Bag error at https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm for further study.
I am getting a surprisingly significant performance boost (+10% cross-validation accuracy gain) with sklearn.ensemble.RandomForestClassifier just by virtue of pre-randomizing the training set.
This is very puzzling to me, since
(a) RandomForestClassifier supposedly randomized the training data anyway; and
(b) Why would the order of example matter so much anyway?
Any words of wisdom?
I have got the same issue and posted a question, which luckily got resolved.
In my case it's because the data are put in order, and I'm using K-fold cross-validation without shuffling when doing the test-train split. This means that the model is only trained on a chunk of adjacent samples with certain pattern.
An extreme example would be, if you have 50 rows of sample all of class A, followed by 50 rows of sample all of class B, and you manually do a train-test split right in the middle. The model is now trained with all samples of class A, but tested with all samples of class B, hence the test accuracy will be 0.
In scikit, the train_test_split do the shuffling by default, while the KFold class doesn't. So you should do one of the following according to your context:
Shuffle the data first
Use train_test_split with shuffle=True (again, this is the default)
Use KFold and remember to set shuffle=True
Ordering of the examples should not affect RF performance at all. Note Rf performance can vary by 1-2% across runs anyway. Are you keeping cross-validation set separately before training?(Just ensuring this is not because cross-validation set is different every time). Also by randomizing I assume you mean changing the order of the examples.
Also you can check the Out of Bag accuracy of the classifier in both cases for the training set itself, you don't need a separate cross-validation set for RF.
During the training of Random Forest, the data for training each individual tree is obtained by sampling by replacement from the training data, thus each training sample is not used for roughly 1/3 of the trees. We can use the votes of these 1/3 trees to predict the out of box probability of the Random forest classification. Thus with OOB accuracy you just need a training set, and not validation or test data to predict performance on unseen data. Check Out of Bag error at https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm for further study.
I'm using weka, I have a training set, and the classify of the examples in the training set is boolean.
After I have the training set, I want to predict the percentage of new input to be true or false. I want to get a number between 0-1, and not only o or 1.
How can I do that, I have seen that in the prediection there are only the possibels classifes.
Thanks in advance.
You can only make the same kind of prediction with the learned classifier -- it learns to make the predictions you train it to make. The kind of prediction you want sounds more like regression. That is, you're don't want a strict classification, but a continuous value designating the membership probability.
The easiest way to achieve what you want is to replace the Booleans in your training set with 0/1 values and learn a regression model. This will give you numbers, although not necessarily only between 0 and 1.
To get real probabilities, you would need to use a classifier that calculates probabilities (such as Naive Bayes) and write some custom code (using the Weka library) to retrieve them. See the javadoc of the method that gives you access to the class probabilities.