Why is cross validation used in decision tree classification? - machine-learning

I trying to learn about decision trees (and other models) and I came across cross validation, now I first thought that cross validation was used to determine the optimal parameters for the model. For example the optimal max_tree_depth in decision tree classification or the optimal number_of_neighbors in k_nearest_neighbor classification. But as I am looking at some examples I think this might be wrong.
Is this wrong?

Cross-validation is used to determine the accuracy of your model in a more accurate way for example in a n-fold cross validation you divide you data into n partitions and use n-1 parts as train set and 1 part as test set and repeat this for all partitions each partition gets to be test set once) then you average results to get a better estimation of your model's accuracy

Related

How do you do cross validation correctly? [duplicate]

I am trying to understand the process of model evaluation and validation in machine learning. Specifically, in which order and how the training, validation and test sets must be used.
Let's say I have a dataset and I want to use linear regression. I am hesitating among various polynomial degrees (hyper-parameters).
In this wikipedia article, it seems to imply that the sequence should be:
Split data into training set, validation set and test set
Use the training set to fit the model (find the best parameters: coefficients of the polynomial).
Afterwards, use the validation set to find the best hyper-parameters (in this case, polynomial degree) (wikipedia article says: "Successively, the fitted model is used to predict the responses for the observations in a second dataset called the validation dataset")
Finally, use the test set to score the model fitted with the training set.
However, this seems strange to me: how can you fit your model with the training set if you haven't chosen yet your hyper-parameters (polynomial degree in this case)?
I see three alternative approachs, I am not sure if they would be correct.
First approach
Split data into training set, validation set and test set
For each polynomial degree, fit the model with the training set and give it a score using the validation set.
For the polynomial degree with the best score, fit the model with the training set.
Evaluate with the test set
Second approach
Split data into training set, validation set and test set
For each polynomial degree, use cross-validation only on the validation set to fit and score the model
For the polynomial degree with the best score, fit the model with the training set.
Evaluate with the test set
Third approach
Split data into only two sets: the training/validation set and the test set
For each polynomial degree, use cross-validation only on the training/validation set to fit and score the model
For the polynomial degree with the best score, fit the model with the training/validation set.
Evaluate with the test set
So the question is:
Is the wikipedia article wrong or am I missing something?
Are the three approaches I envisage correct? Which one would be preferrable? Would there be another approach better than these three?
The Wikipedia article is not wrong; according to my own experience, this is a frequent point of confusion among newcomers to ML.
There are two separate ways of approaching the problem:
Either you use an explicit validation set to do hyperparameter search & tuning
Or you use cross-validation
So, the standard point is that you always put aside a portion of your data as test set; this is used for no other reason than assessing the performance of your model in the end (i.e. not back-and-forth and multiple assessments, because in that case you are using your test set as a validation set, which is bad practice).
After you have done that, you choose if you will cut another portion of your remaining data to use as a separate validation set, or if you will proceed with cross-validation (in which case, no separate and fixed validation set is required).
So, essentially, both your first and third approaches are valid (and mutually exclusive, i.e. you should choose which one you will go with). The second one, as you describe it (CV only in the validation set?), is certainly not (as said, when you choose to go with CV you don't assign a separate validation set). Apart from a brief mention of cross-validation, what the Wikipedia article actually describes is your first approach.
Questions of which approach is "better" cannot of course be answered at that level of generality; both approaches are indeed valid, and are used depending on the circumstances. Very loosely speaking, I would say that in most "traditional" (i.e. non deep learning) ML settings, most people choose to go with cross-validation; but there are cases where this is not practical (most deep learning settings, again loosely speaking), and people are going with a separate validation set instead.
What Wikipedia means is actually your first approach.
1 Split data into training set, validation set and test set
2 Use the
training set to fit the model (find the best parameters: coefficients
of the polynomial).
That just means that you use your training data to fit a model.
3 Afterwards, use the validation set to find the best hyper-parameters
(in this case, polynomial degree) (wikipedia article says:
"Successively, the fitted model is used to predict the responses for
the observations in a second dataset called the validation dataset")
That means that you use your validation dataset to predict its values with the previously (on the training set) trained model to get a score of how good your model performs on unseen data.
You repeat step 2 and 3 for all hyperparameter combinations you want to look at (in your case the different polynomial degrees you want to try) to get a score (e.g. accuracy) for every hyperparmeter combination.
Finally, use the test set to score the model fitted with the training
set.
Why you need the validation set is pretty well explained in this stackexchange question
https://datascience.stackexchange.com/questions/18339/why-use-both-validation-set-and-test-set
In the end you can use any of your three aproaches.
approach:
is the fastest because you only train one model for every hyperparameter.
also you don't need as much data as for the other two.
approach:
is slowest because you train for k folds k classifiers plus the final one with all your training data to validate it for every hyperparameter combination.
You also need a lot of data because you split your data three times and that first part again in k folds.
But here you have the least variance in your results. Its pretty unlikely to get k good classifiers and a good validation result by coincidence. That could happen more likely in the first approach. Cross Validation is also way more unlikely to overfit.
approach:
is in its pros and cons in between of the other two. Here you also have less likely overfitting.
In the end it will depend on how much data you have and if you get into more complex models like neural networks, how much time/calculationpower you have and are willing to spend.
Edit As #desertnaut mentioned: Keep in mind that you should use training- and validationset as training data for your evaluation with the test set. Also you confused training with validation set in your second approach.

Order between using validation, training and test sets

I am trying to understand the process of model evaluation and validation in machine learning. Specifically, in which order and how the training, validation and test sets must be used.
Let's say I have a dataset and I want to use linear regression. I am hesitating among various polynomial degrees (hyper-parameters).
In this wikipedia article, it seems to imply that the sequence should be:
Split data into training set, validation set and test set
Use the training set to fit the model (find the best parameters: coefficients of the polynomial).
Afterwards, use the validation set to find the best hyper-parameters (in this case, polynomial degree) (wikipedia article says: "Successively, the fitted model is used to predict the responses for the observations in a second dataset called the validation dataset")
Finally, use the test set to score the model fitted with the training set.
However, this seems strange to me: how can you fit your model with the training set if you haven't chosen yet your hyper-parameters (polynomial degree in this case)?
I see three alternative approachs, I am not sure if they would be correct.
First approach
Split data into training set, validation set and test set
For each polynomial degree, fit the model with the training set and give it a score using the validation set.
For the polynomial degree with the best score, fit the model with the training set.
Evaluate with the test set
Second approach
Split data into training set, validation set and test set
For each polynomial degree, use cross-validation only on the validation set to fit and score the model
For the polynomial degree with the best score, fit the model with the training set.
Evaluate with the test set
Third approach
Split data into only two sets: the training/validation set and the test set
For each polynomial degree, use cross-validation only on the training/validation set to fit and score the model
For the polynomial degree with the best score, fit the model with the training/validation set.
Evaluate with the test set
So the question is:
Is the wikipedia article wrong or am I missing something?
Are the three approaches I envisage correct? Which one would be preferrable? Would there be another approach better than these three?
The Wikipedia article is not wrong; according to my own experience, this is a frequent point of confusion among newcomers to ML.
There are two separate ways of approaching the problem:
Either you use an explicit validation set to do hyperparameter search & tuning
Or you use cross-validation
So, the standard point is that you always put aside a portion of your data as test set; this is used for no other reason than assessing the performance of your model in the end (i.e. not back-and-forth and multiple assessments, because in that case you are using your test set as a validation set, which is bad practice).
After you have done that, you choose if you will cut another portion of your remaining data to use as a separate validation set, or if you will proceed with cross-validation (in which case, no separate and fixed validation set is required).
So, essentially, both your first and third approaches are valid (and mutually exclusive, i.e. you should choose which one you will go with). The second one, as you describe it (CV only in the validation set?), is certainly not (as said, when you choose to go with CV you don't assign a separate validation set). Apart from a brief mention of cross-validation, what the Wikipedia article actually describes is your first approach.
Questions of which approach is "better" cannot of course be answered at that level of generality; both approaches are indeed valid, and are used depending on the circumstances. Very loosely speaking, I would say that in most "traditional" (i.e. non deep learning) ML settings, most people choose to go with cross-validation; but there are cases where this is not practical (most deep learning settings, again loosely speaking), and people are going with a separate validation set instead.
What Wikipedia means is actually your first approach.
1 Split data into training set, validation set and test set
2 Use the
training set to fit the model (find the best parameters: coefficients
of the polynomial).
That just means that you use your training data to fit a model.
3 Afterwards, use the validation set to find the best hyper-parameters
(in this case, polynomial degree) (wikipedia article says:
"Successively, the fitted model is used to predict the responses for
the observations in a second dataset called the validation dataset")
That means that you use your validation dataset to predict its values with the previously (on the training set) trained model to get a score of how good your model performs on unseen data.
You repeat step 2 and 3 for all hyperparameter combinations you want to look at (in your case the different polynomial degrees you want to try) to get a score (e.g. accuracy) for every hyperparmeter combination.
Finally, use the test set to score the model fitted with the training
set.
Why you need the validation set is pretty well explained in this stackexchange question
https://datascience.stackexchange.com/questions/18339/why-use-both-validation-set-and-test-set
In the end you can use any of your three aproaches.
approach:
is the fastest because you only train one model for every hyperparameter.
also you don't need as much data as for the other two.
approach:
is slowest because you train for k folds k classifiers plus the final one with all your training data to validate it for every hyperparameter combination.
You also need a lot of data because you split your data three times and that first part again in k folds.
But here you have the least variance in your results. Its pretty unlikely to get k good classifiers and a good validation result by coincidence. That could happen more likely in the first approach. Cross Validation is also way more unlikely to overfit.
approach:
is in its pros and cons in between of the other two. Here you also have less likely overfitting.
In the end it will depend on how much data you have and if you get into more complex models like neural networks, how much time/calculationpower you have and are willing to spend.
Edit As #desertnaut mentioned: Keep in mind that you should use training- and validationset as training data for your evaluation with the test set. Also you confused training with validation set in your second approach.

Machine learning: training model from test data

I was wondering if a model trains itself from the test data as well while evaluating it multiple times, leading to a over-fitting scenario. Normally we split the training data into train-test splits and I noticed some people split it into 3 sets of data - train, test and eval. eval is for final evaluation of the model. I might be wrong but my point is that if the above mentioned scenario is not true, then there is no need for an eval data set.
Need some clarification.
The best way to evaluate how well a model will perform in the 'wild' is to evaluate its performance on a data set it has not seen (i.e., been trained on) -- assuming you have the labels in a supervised learning problem.
People split their data into train/test/eval and use the training data to estimate/learn the model parameters and the test set to tune the model (e.g., by trying different hyperparameter combinations). A model is usually selected based on the hyperparameter combination that optimizes a test metric (regression - MSE, R^2, etc.; classification - AUC, accuracy, etc.). Then the selected model is usually retrained on the combined train + test data set. After retraining, the model is evaluated based on its performance on the eval data set (assuming you have some ground truth labels to evaluate your predictions). The eval metric is what you report as the generalization metric -- that is, how well your model performs on novel data.
Does this help?
Consider you have train and test datasets. Train dataset is the one in which you know the output and you train your model on train dataset and you try to predict the output of Test dataset.
Most people split train dataset into train and validation. So first you run your model on train data and evaluate it on validation set. Then again you run the model on test dataset.
Now you are wondering how this will help and of any use?
This helps you to understand your model performance on seen data(validation data) and unseen data(your test data).
Here comes bias-variance trade-off into picture.
https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/
Let's consider a binary classification example where a student's previous semester grades, Sports achievements, Extracurriculars etc are used to predict whether or not he will pass the final semester.
Let's say we have around 10000 samples (data of 10000 students).
Now we split them:
Training set - 6000 samples
Validation set - 2000 samples
Test set - 1000 samples
The training data is generally split into three (training set, validation set, and test set) for the following reasons:
1) Feature Selection: Let's assume you have trained the model using some algorithm. You calculate the training accuracy and validation accuracy. You plot the learning curves and find if the model is overfitting or underfitting and make changes (add or remove features, add more samples etc). Repeat until you have the best validation accuracy. Now test the model with the test set to get your final score.
2) Parameter Selection: When you use algorithms like KNN, And you need to find the best K value which fits the model properly. You can plot the accuracy of different K value and choose the best validation accuracy and use it for your test set. (same applies when you find n_estimators for Random forests etc)
3) Model Selection: Also you can train the model with different algorithms and choose the model which better fits the data by testing out the accuracy using validation set.
So basically the Validation set helps you evaluate your model's performance how you must fine-tune it for best accuracy.
Hope you find this helpful.

Why not optimize hyperparameters on train dataset?

When developing a neural net one typically partitions training data into Train, Test, and Holdout datasets (many people call these Train, Validation, and Test respectively. Same things, different names). Many people advise selecting hyperparameters based on performance in the Test dataset. My question is: why? Why not maximize performance of hyperparameters in the Train dataset, and stop training the hyperparameters when we detect overfitting via a drop in performance in the Test dataset? Since Train is typically larger than Test, would this not produce better results compared to training hyperparameters on the Test dataset?
UPDATE July 6 2016
Terminology change, to match comment below. Datasets are now termed Train, Validation, and Test in this post. I do not use the Test dataset for training. I am using a GA to optimize hyperparameters. At each iteration of the outer GA training process, the GA chooses a new hyperparameter set, trains on the Train dataset, and evaluates on the Validation and Test datasets. The GA adjusts the hyperparameters to maximize accuracy in the Train dataset. Network training within an iteration stops when network overfitting is detected (in the Validation dataset), and the outer GA training process stops when overfitting of the hyperparameters is detected (again in Validation). The result is hyperparameters psuedo-optimized for the Train dataset. The question is: why do many sources (e.g. https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf, Section B.1) recommend optimizing the hyperparameters on the Validation set, rather than the Train set? Quoting from Srivasta, Hinton, et al (link above): "Hyperparameters were tuned on the validation set such that the best validation error was produced..."
The reason is that developing a model always involves tuning its configuration: for example, choosing the number of layers or the size of the layers (called the hyper-parameters of the model, to distinguish them from the parameters, which are the network’s weights). You do this tuning by using as a feedback signal the performance of the model on the validation data. In essence, this tuning is a form of learning: a search for a good configuration in some parameter space. As a result, tuning the configuration of the model based on its performance on the validation set can quickly result in overfitting to the validation set, even though your model is never directly trained on it.
Central to this phenomenon is the notion of information leaks. Every time you tune a hyperparameter of your model based on the model’s performance on the validation set, some information about the validation data leaks into the model. If you do this only once, for one parameter, then very few bits of information will leak, and your validation set will remain reliable to evaluate the model. But if you repeat this many times—running one experiment, evaluating on the validation set, and modifying your model as a result—then you’ll leak an increasingly significant amount of information about the validation set into the model.
At the end of the day, you’ll end up with a model that performs artificially well on the validation data, because that’s what you optimized it for. You care about performance on completely new data, not the validation data, so you need to use a completely different, never-before-seen dataset to evaluate the model: the test dataset. Your model shouldn’t have had access to any information about the test set, even indirectly. If anything about the model has been tuned based on test set performance, then your measure of generalization will be flawed.
There are two things you are missing here. First, minor, is that test set is never used to do any training. This is a purpose of validation (test is just to asses your final, testing performance). The major missunderstanding is what it means "to use validation set to fit hyperparameters". This means exactly what you describe - to train a model with a given hyperparameters on the training set, and use validation to simply check if you are overfitting (you use it to estimate generalization) , but you do not really "train" on them, you simply check your scores on this subset (which, as you noticed - is way smaller).
You cannot "stop training hyperparamters" because this is not a continuous process, usually hyperparameters are just "possible sets of values", and you have to simply test lots of them, there is no valid way of defining a direct trainingn procedure between actual metric you are interested in (like accuracy) and hyperparameters (like size of the hidden layer in NN or even C parameter in SVM), as the functional link between these two is not differentiable, is highly non convex and in general "ugly" to optimize. If you can define a nice optimization procedure in terms of a hyperparameter than it is usually not called a hyperparameter but a parameter, the crucial distinction in this naming convention is what makes it hard to optimize directly - we call hyperparameter a parameter, than cannot be directly optimized against thus you need a "meta method" (like simply testing on validation set) to select it.
However, you can define a "nice" meta optimization protocol for hyperparameters, but this will still use validation set as an estimator, for example Bayesian optimization of hyperparameters does exactly this - it tries to fit a function saying how well is you model behaving in the space of hyperparameters, but in order to have any "training data" for this meta-method, you need validation set to estimate it for any given set of hyperparameters (input to your meta method)
simple answer: we do
In the case of a simple feedforward neural network you do have to select e.g. layer and unit count per layer, regularization (and non-continuous parameters like topology if not feedforward and loss function) in the beginning and you would optimize on those.
So, in summary you optimize:
ordinary parameters only during training but not during validation
hyperparameters during training and during validation
It is very important not to touch the many ordinary parameters (weights and biases) during validation. That's because there are thousands of degrees of freedom in them which means they can learn the data you train them on. But then the model doesn't generalize to new data as well (even when that new data originated from the same distribution). You usually only have very few degrees of freedom in the hyperparameters which usually control the rigidity of the model (regularization).
This holds true for other machine learning algorithms like decision trees, forests, etc as well.

How to evaluate the performance of different model on one dataset?

I want to evaluate the performance different model such as SVM, RandForest, CNN etc, I only have one dataset. So I split the dataset to training set and testing set and train different model on this dataset with training data and test with testing dataset.
My question: Can I get the real performance of different model on only one dataset? For example: I found SVM model get the best result, So Should I select the SVM as my final classification model?
Its probably a better idea to cross validate your models with different test samples through cross validation to avoid biases. Also check your models against different evaluation metrics depending upon your application type. For instance use recall, accuracy and AUC for each model if its a classification problem.
Evaluation results can be pretty deceptive and require extensive validation.
You can Plot ROC curve for all the models.The model for which AUC is highest will be best model.

Resources