What is the difference between normalisation and regularisation in machine learning - machine-learning

Is regularisation a subset of normalisation ? I know normalisation is used when all the values are not on the same scale, but normalisation is also used to tone down the values, and so is regularisation .So what's the difference between two?

Normalisation adjusts the data; regularisation adjusts the prediction function.
As you noted, if your data are on very different scales (esp. low-to-high range), you likely want to normalise the data: alter each column to have the same (or compatible) basic statistics, such as standard deviation and mean. This is helpful to keep your fitting parameters on a scale that the computer can handle without a damaging loss of accuracy.
One goal of model training is to identify the signal (important features) and ignore the noise (random variation not really related to classification). If you give your model free rein to minimize the error on the given data, you can suffer from overfitting: the model insists on predicting the data set exactly, including those random variations.
Regularisation imposes some control on this by rewarding simpler fitting functions over complex ones. For instance, it can promote that a simple log function with a RMS error of x is preferable to a 15th-degree polynomial with an error of x/2. Tuning the trade-off is up to the model developer: if you know that your data are reasonably smooth in reality, you can look at the output functions and fitting errors, and choose your own balance.

Related

How to deal with dataset of different features?

I am working to create an MLP model on a CEA Classification Dataset (Binary Classification). Each sample contains different 4 features, such as resistance and other values, each in its own range (resistance in hundreds, another in micros, etc.). I am still new to machine learning and this is the first real model to build. How can I deal with such data? I have tried feeding each sample to the neural network with a sigmoid activation function, but I am not getting accurate results. My assumption to deal with this kind of data is to scale it? If so, what are some resources which are useful to look at, since I do not quite understand when is scaling required.
Scaling your data can be an important step in building a machine-learning model, especially when working with neural networks. Scaling can help to ensure that all of the features in your dataset are on a similar scale, which can make it easier for the model to learn.
There are a few different ways to scale your data, such as normalization and standardization. Normalization is the process of scaling the data so that it has a minimum value of 0 and a maximum value of 1. Standardization is the process of scaling the data so that it has a mean of 0 and a standard deviation of 1.
When working with your CEA Classification dataset, it might be helpful to try both normalization and standardization to see which one works better for your specific dataset. You can use scikit-learn library's preprocessing functions like MinMaxScaler() and StandardScaler() for normalization and standardization respectively.
Additionally, it might be helpful to try different activation functions, such as ReLU or LeakyReLU, to see if they lead to more accurate results. Also, you can try adding more layers and neurons in your neural network to see if it improves the performance.
It's also important to remember that feature engineering, which includes the process of selecting the most important features, can be more important than scaling.

Weighted features in machine learning

I am a beginner in machine learning. So any help or suggestion would be of great help.
I have read that putting weights on features and Predicting is a very bad idea. But what if few features needs to be weighted.
In a classification problem let's say it's a common norm that age is most dependent, how do I give weights to this feature. I was thinking to normalize it but with a variance of 1.5 or 2 (other features with variance 1), I believe that this feature will have more weight. Is this fundamentally wrong ? If wrong any other method.
Does it effect differently for classification and regression problems ?
If we are talking specifically about random forests (as you tagged) then you can use the Weighted Subspace Random Forest algorithm (in R wsrf package). The algorithm determines a weight for each variable and then uses these during the model building.
The informativeness of a variable with respect to the class is
measured by an information gain ratio. The measure is used as the
probability of that variable being selected for inclusion in the
variable subspace when splitting a specific node during the tree
building process. Therefore, variables with higher values by the
measure are more likely to be chosen as candidates during variable
selection and a stronger tree can be built.
Generally if a feature has more Importance compared to other features and the model is Dense enough, with enough training sample, your model will automatically give it more Importance by optimizing weight matrices to account for that because we have partial derivatives in back propagation which calculate change by each connection, so it learns to give more importance to that feature on itself. If you don't normalize it, but scale it to a higher scale, you might have overstated it's important.
In practice a neural network works best if the inputs are centered and white. That means that their covariance is diagonal and the mean is the zero vector. This improves optimization of the neural net, since the hidden activation functions don't saturate that fast and thus do not give you near zero gradients early on in learning.
If you do scale just one feature up by a small value, it may or may not have desired effects, but the higher probability is of saturated gradients, so we avoid it.

Data Science Scaling/Normalization real case

When do data pre-processing, it is suggested to do either scaling or normalization. It is easy to do it when you have data on your hand. You have all the data and can do it right away. But after the model built and run, does the first data that comes in need to be scaled or normalized? If it needed, it only one single row how to scale or normalize it? How do we know what is the min/max/mean/stdev from each feature? And how is the incoming data is the min/max/mean each feature?
Please advise
First of all you should know when to use scaling and normalization.
Scaling - scaling is nothing but to transform your features to comparable magnitudes.Let say if you have features like person's income and you noticed that some have value of order 10^3 and some have 10^6.Now if you model your problem with this features then algorithms like KNN, Ridge Regression will give higher weight to higher magnitude of such attributes.To prevent this you need to first scale your features.Min-Max scaler is one of the most used scaling.
Mean Normalisation -
If after examining the distribution of the feature and you found that feature is not centered around zero then for the algorithm like svm where objective function already assumes zero mean and same order variance, we could have problem in modeling.So here you should do Mean Normalisation.
Standardization - For the algorithm like svm, neural network, logistic regression it is necessary to have a variance of the feature in the same order.So why don't we make it to one.So in standardization, we make the distribution of features to zero mean and unit variance.
Now let's try to answer your question in terms of training and testing set.
So let's say you are training your model on 50k dataset and testing on 10k dataset.
For the above three transformations, the standard approach says that you should fit any normalizer or scaler to only training dataset and use only transform for the testing dataset.
In our case, if we want to use standardization then we will first fit our standardizer on 50k training dataset and then used to transform it 50k training dataset and also testing dataset.
Note - We shouldn't fit our standardizer to test dataset, in place of we will use already fitted standardizer to transform testing dataset.
Yes, you need to apply normalization to the input data, else the model will predict nonsense.
You also have to save the normalization coefficients that were used during training, or from training data. Then you have to apply the same coefficients to incoming data.
For example if you use min-max normalization:
f_n = (f - min(f)) / (max(f) - min_(f))
Then you need to save the min(f) and max(f) in order to perform normalization for new data.

How do I use principal component analysis in supervised machine learning classification problems?

I have been working through the concepts of principal component analysis in R.
I am comfortable with applying PCA to a (say, labeled) dataset and ultimately extracting out the most interesting first few principal components as numeric variables from my matrix.
The ultimate question is, in a sense, now what? Most of the reading I've come across on PCA immediately halts after the computations are done, especially with regards to machine learning. Pardon my hyperbole, but I feel as if everyone agrees that the technique is useful, but nobody wants to actually use it after they do it.
More specifically, here's my real question:
I respect that principle components are linear combinations of the variables you started with. So, how does this transformed data play a role in supervised machine learning? How could someone ever use PCA as a way to reduce dimensionality of a dataset, and THEN, use these components with a supervised learner, say, SVM?
I'm absolutely confused about what happens to our labels. Once we are in eigenspace, great. But I don't see any way to continue to move forward with machine learning if this transformation blows apart our concept of classification (unless there's some linear combination of "Yes" or "No" I haven't come across!)
Please step in and set me straight if you have the time and wherewithal. Thanks in advance.
Old question, but I don't think it's been satisfactorily answered (and I just landed here myself through Google). I found myself in your same shoes and had to hunt down the answer myself.
The goal of PCA is to represent your data X in an orthonormal basis W; the coordinates of your data in this new basis is Z, as expressed below:
Because of orthonormality, we can invert W simply by transposing it and write:
Now to reduce dimensionality, let's pick some number of components k < p. Assuming our basis vectors in W are ordered from largest to smallest (i.e., eigenvector corresponding to the largest eigenvalue is first, etc.), this amounts to simply keeping the first k columns of W.
Now we have a k dimensional representation of our training data X. Now you run some supervised classifier using the new features in Z.
The key is to realize that W is in some sense a canonical transformation from our space of p features down to a space of k features (or at least the best transformation we could find using our training data). Thus, we can hit our test data with the same W transformation, resulting in a k-dimensional set of test features:
We can now use the same classifier trained on the k-dimensional representation of our training data to make predictions on the k-dimensional representation of our test data:
The point of going through this whole procedure is because you may have thousands of features, but (1) not all of them are going to have a meaningful signal and (2) your supervised learning method may be far too complex to train on the full feature set (either it would take too long or your computer wouldn't have a enough memory to process the calculations). PCA allows you to dramatically reduce the number of features it takes to represent your data without eliminating features of your data that truly add value.
After you have used PCA on a portion of your data to compute the transformation matrix, you apply that matrix to each of your data points before submitting them to your classifier.
This is useful when the intrinsic dimensionality of your data is much smaller than the number of components and the gain in performance you get during classification is worth the loss in accuracy and the cost of PCA. Also, keep in mind the limitations of PCA:
In performing a linear transformation, you implicitly assume that all components are expressed in equivalent units.
Beyond variance, PCA is blind to the structure of your data. It may very well happen that the data splits along low-variance dimensions. In that case, the classifier won't learn from transformed data.

What is the best/preferred approach to implement Maximum Likelihood Estimation for large data sets in GBs

I have a data-set in Gigabytes(GB) and want to estimate the parameters for missing values in that.
There is an algorithm called MLE(Maximum-likelihood Estimation) in machine learning that can be used for it.
Since R might not work on such a large data-set,so which library will be best to use for it?
By wiki:MLE:
In statistics, maximum-likelihood estimation (MLE) is a method of estimating the parameters of a statistical model. When applied to a data set and given a statistical model, maximum-likelihood estimation provides estimates for the model's parameters.
Generally you need two steps before you can apply MLE:
obtain a dataset
identify a statistical model
At this time, if you can obtain an analytic form of solution for the MLE estimate, just stream your data to the mle-estimate calculation, e.g., for gaussian distribution, to estimate mean, you just accumulate the sum, and keep the count and the sample mean will be your mle-estimate.
However, when the model involves many parameters and its pdf is highly non-linear. In such situations, the MLE estimate must be sought numerically using nonlinear optimization algorithms. If your data size is huge, try stochastic gradient descent, the true gradient is approximated by a gradient at a single example. As the algorithm sweeps through the training set, it performs the update formula for each training example. So that you can still stream your data one at a time to your update program in multiple sweeps fashion. In this way, memory constraint should not be a problem at all.

Resources