Principal Component Analysis, how many components? - machine-learning

I don't understand one point of PCA. PCA returns the directions that maximizes the variance for each feature? I mean, it will return a component for each feature of our original space, and only the k biggest components will be used as axis for the new subspace right? So actually if I'm in 50-D and 49 features have a strong variance i can just pass to a 49-D space? I'm speaking in plain English of course, nothing formally or technical.
Thanks

If your original data has 50 dimensions, then PCA will return 50 principal components. It is up to you to choose a subset k of those principal components that can explain the most variance, typically at least 90% of the variance. The PCA software you use will usually compute how much variance is explained by each principal component, so just add up the variance and select the top k that can get you to 90% of the total variance. See this PCA tutorial:
In general, we would like to choose the smallest K such that 0.85 to
0.99 (equivalently, 85% to 95%) of the total variance is explained, where these values follow from PCA best practices.
... When we say that PCA can reduce dimensionality, we mean that PCA
can compute principal components and the user can choose the smallest
number K of them that explain 0.95 of the variance. A subjectively
satisfactory result would be when K is small relative to the original
number of features D.

Related

Which machine learning algorithm to use for high dimensional matching?

Let say, I can define a person by 1000 different way, so i have 1,000 features for a given person.
PROBLEM: How can I run machine learning algorithm to determine the best possible match, or closest/most similar person, given the 1,000 features?
I have attempted Kmeans but this appears to be more for 2 features, rather than high dimensions.
You basically after some kind of K Nearest Neighbors Algorithm.
Since your data has high dimension you should explore the following:
Dimensionality Reduction - You may have 1000 features but probably some of them are better than others. So it would be a wise move to apply some kind of Dimensionality Reduction. Easiest and teh first point o start with would be Principal Component Analysis (PCA) which preserves ~90% of the data (Namely use enough Eigen Vectors which match 90% o the energy with their matching Eigen Values). I would assume you'll see a significant reduction from this.
Accelerated K Nearest Neighbors - There are many methods out there to accelerate the search of K-NN in high dimensional case. The K D Tree Algorithm would be a good start for that.
Distance metrics
You can try to apply a distance metric (e.g. cosine similarity) directly.
Supervised
If you know how similar the people are, you can try the following:
Neural networks, Approach #1
Input: 2x the person feature vector (hence 2000 features)
Output: 1 float (similarity of the two people)
Scalability: Linear with the number of people
See neuralnetworksanddeeplearning.com for a nice introduction and Keras for a simple framework
Neural networks, Approach #2
A more advanced approach is called metric learning.
Input: the person feature vector (hence 2000 features)
Output: k floats (you choose k, but it should be lower than 1000)
For training, you have to give the network first on person, store the result, then the second person, store the result, apply a distance metric of your choice (e.g. Euclidean distance) of the two results and then backpropagate the error.

how to choose more than one dimension using principle component analysis

i recently read PCA (Principle Component Analysis) and understood that how to reduce dimension. we select an eigenvector corresponding to maximum eigenvalue when we need only one dimension but if need more than one dimension then should i take eigenvectors corrosponding to maximum eigenvalues?
Principal component analysis (PCA) is a statistical technique that carries out an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.
The number of components after PCA transformation is equal to the number of variables. This transformation is defined in such a way that the first principal component has the largest possible variance (that is, it accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. The resulting vectors are an uncorrelated orthogonal basis set.
Generally, people take as many components that accounts for 99% variance, which will be much lesser than the total number of variables.
References:
https://stats.stackexchange.com/a/140579/86202
http://scikit-learn.org/stable/modules/decomposition.html#pca
https://en.wikipedia.org/wiki/Principal_component_analysis
Basically yes(from what can be infered from your description), it would be nice to have more information in your case, your implementation tool ,etc. But basically yes , the process would be:
Compute covariance matrix
Compute eigenvectors of the covariance matrix,depending on your tool it can be computed using pre-defined functions "eig" or also "singular value descomposition" (svd in matlab). If you use svd, it commonly will return 3 values, the first value its a matrix wich will contain the eigenvectors , of this matrix if you want "k" dimensions , you take "k" columns and they are your principal components.
Heres my implementation in octave of PCA, i use a pca.m file to define my pca calculation and ex7_pca.m to use it for dimensinality reduction for that particular case:
https://github.com/llealgt/standord_machine_learning_exercices/blob/master/machine-learning-ex7/ex7/pca.m
https://github.com/llealgt/standord_machine_learning_exercices/blob/master/machine-learning-ex7/ex7/ex7_pca.m

word2vec: negative sampling (in layman term)?

I'm reading the paper below and I have some trouble , understanding the concept of negative sampling.
http://arxiv.org/pdf/1402.3722v1.pdf
Can anyone help , please?
The idea of word2vec is to maximise the similarity (dot product) between the vectors for words which appear close together (in the context of each other) in text, and minimise the similarity of words that do not. In equation (3) of the paper you link to, ignore the exponentiation for a moment. You have
v_c . v_w
-------------------
sum_i(v_ci . v_w)
The numerator is basically the similarity between words c (the context) and w (the target) word. The denominator computes the similarity of all other contexts ci and the target word w. Maximising this ratio ensures words that appear closer together in text have more similar vectors than words that do not. However, computing this can be very slow, because there are many contexts ci. Negative sampling is one of the ways of addressing this problem- just select a couple of contexts ci at random. The end result is that if cat appears in the context of food, then the vector of food is more similar to the vector of cat (as measures by their dot product) than the vectors of several other randomly chosen words (e.g. democracy, greed, Freddy), instead of all other words in language. This makes word2vec much much faster to train.
Computing Softmax (Function to determine which words are similar to the current target word) is expensive since requires summing over all words in V (denominator), which is generally very large.
What can be done?
Different strategies have been proposed to approximate the softmax. These approaches can be grouped into softmax-based and sampling-based approaches. Softmax-based approaches are methods that keep the softmax layer intact, but modify its architecture to improve its efficiency (e.g hierarchical softmax). Sampling-based approaches on the other hand completely do away with the softmax layer and instead optimise some other loss function that approximates the softmax (They do this by approximating the normalization in the denominator of the softmax with some other loss that is cheap to compute like negative sampling).
The loss function in Word2vec is something like:
Which logarithm can decompose into:
With some mathematic and gradient formula (See more details at 6) it converted to:
As you see it converted to binary classification task (y=1 positive class, y=0 negative class). As we need labels to perform our binary classification task, we designate all context words c as true labels (y=1, positive sample), and k randomly selected from corpora as false labels (y=0, negative sample).
Look at the following paragraph. Assume our target word is "Word2vec". With window of 3, our context words are: The, widely, popular, algorithm, was, developed. These context words consider as positive labels. We also need some negative labels. We randomly pick some words from corpus (produce, software, Collobert, margin-based, probabilistic) and consider them as negative samples. This technique that we picked some randomly example from corpus is called negative sampling.
Reference :
(1) C. Dyer, "Notes on Noise Contrastive Estimation and Negative Sampling", 2014
(2) http://sebastianruder.com/word-embeddings-softmax/
I wrote an tutorial article about negative sampling here.
Why do we use negative sampling? -> to reduce computational cost
The cost function for vanilla Skip-Gram (SG) and Skip-Gram negative sampling (SGNS) looks like this:
Note that T is the number of all vocabs. It is equivalent to V. In the other words, T = V.
The probability distribution p(w_t+j|w_t) in SG is computed for all V vocabs in the corpus with:
V can easily exceed tens of thousand when training Skip-Gram model. The probability needs to be computed V times, making it computationally expensive. Furthermore, the normalization factor in the denominator requires extra V computations.
On the other hand, the probability distribution in SGNS is computed with:
c_pos is a word vector for positive word, and W_neg is word vectors for all K negative samples in the output weight matrix. With SGNS, the probability needs to be computed only K + 1 times, where K is typically between 5 ~ 20. Furthermore, no extra iterations are necessary to compute the normalization factor in the denominator.
With SGNS, only a fraction of weights are updated for each training sample, whereas SG updates all millions of weights for each training sample.
How does SGNS achieve this? -> by transforming multi-classification task into binary classification task.
With SGNS, word vectors are no longer learned by predicting context words of a center word. It learns to differentiate the actual context words (positive) from randomly drawn words (negative) from the noise distribution.
In real life, you don't usually observe regression with random words like Gangnam-Style, or pimples. The idea is that if the model can distinguish between the likely (positive) pairs vs unlikely (negative) pairs, good word vectors will be learned.
In the above figure, current positive word-context pair is (drilling, engineer). K=5 negative samples are randomly drawn from the noise distribution: minimized, primary, concerns, led, page. As the model iterates through the training samples, weights are optimized so that the probability for positive pair will output p(D=1|w,c_pos)≈1, and probability for negative pairs will output p(D=1|w,c_neg)≈0.

Text Classification - how to find the features that most affected the decision

When using SVMlight or LIBSVM in order to classify phrases as positive or negative (Sentiment Analysis), is there a way to determine which are the most influential words that affected the algorithms decision? For example, finding that the word "good" helped determine a phrase as positive, etc.
If you use the linear kernel then yes - simply compute the weights vector:
w = SUM_i y_i alpha_i sv_i
Where:
sv - support vector
alpha - coefficient found with SVMlight
y - corresponding class (+1 or -1)
(in some implementations alpha's are already multiplied by y_i and so they are positive/negative)
Once you have w, which is of dimensions 1 x d where d is your data dimension (number of words in the bag of words/tfidf representation) simply select the dimensions with high absolute value (no matter positive or negative) in order to find the most important features (words).
If you use some kernel (like RBF) then the answer is no, there is no direct method of taking out the most important features, as the classification process is performed in completely different way.
As #lejlot mentioned, with linear kernel in SVM, one of the feature ranking strategies is based on the absolute values of weights in the model. Another simple and effective strategy is based on F-score. It considers each feature separately and therefore cannot reveal mutual information between features. You can also determine how important a feature is by removing that feature and observe the classification performance.
You can see this article for more details on feature ranking.
With other kernels in SVM, the feature ranking is not that straighforward, yet still feasible. You can construct an orthogonal set of basis vectors in the kernel space, and calculate the weights by kernel relief. Then the implicit feature ranking can be done based on the absolute value of weights. Finally the data is projected into the learned subspace.

importance of PCA or SVD in machine learning

All this time (specially in Netflix contest), I always come across this blog (or leaderboard forum) where they mention how by applying a simple SVD step on data helped them in reducing sparsity in data or in general improved the performance of their algorithm in hand.
I am trying to think (since long time) but I am not able to guess why is it so.
In general, the data in hand I get is very noisy (which is also the fun part of bigdata) and then I do know some basic feature scaling stuff like log-transformation stuff , mean normalization.
But how does something like SVD helps.
So lets say i have a huge matrix of user rating movies..and then in this matrix, I implement some version of recommendation system (say collaborative filtering):
1) Without SVD
2) With SVD
how does it helps
SVD is not used to normalize the data, but to get rid of redundant data, that is, for dimensionality reduction. For example, if you have two variables, one is humidity index and another one is probability of rain, then their correlation is so high, that the second one does not contribute with any additional information useful for a classification or regression task. The eigenvalues in SVD help you determine what variables are most informative, and which ones you can do without.
The way it works is simple. You perform SVD over your training data (call it matrix A), to obtain U, S and V*. Then set to zero all values of S less than a certain arbitrary threshold (e.g. 0.1), call this new matrix S'. Then obtain A' = US'V* and use A' as your new training data. Some of your features are now set to zero and can be removed, sometimes without any performance penalty (depending on your data and the threshold chosen). This is called k-truncated SVD.
SVD doesn't help you with sparsity though, only helps you when features are redundant. Two features can be both sparse and informative (relevant) for a prediction task, so you can't remove either one.
Using SVD, you go from n features to k features, where each one will be a linear combination of the original n. It's a dimensionality reduction step, just like feature selection is. When redundant features are present, though, a feature selection algorithm may lead to better classification performance than SVD depending on your data set (for example, maximum entropy feature selection). Weka comes with a bunch of them.
See: http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Dimensionality_Reduction/Singular_Value_Decomposition
https://stats.stackexchange.com/questions/33142/what-happens-when-you-apply-svd-to-a-collaborative-filtering-problem-what-is-th
The Singular Value Decomposition is often used to approximate a matrix X by a low rank matrix X_lr:
Compute the SVD X = U D V^T.
Form the matrix D' by keeping the k largest singular values and setting the others to zero.
Form the matrix X_lr by X_lr = U D' V^T.
The matrix X_lr is then the best approximation of rank k of the matrix X, for the Frobenius norm (the equivalent of the l2-norm for matrices). It is computationally efficient to use this representation, because if your matrix X is n by n and k << n, you can store its low rank approximation with only (2n + 1)k coefficients (by storing U, D' and V).
This was often used in matrix completion problems (such as collaborative filtering) because the true matrix of user ratings is assumed to be low rank (or well approximated by a low rank matrix). So, you wish to recover the true matrix by computing the best low rank approximation of your data matrix. However, there are now better ways to recover low rank matrices from noisy and missing observations, namely nuclear norm minimization. See for example the paper The power of convex relaxation: Near-optimal matrix completion by E. Candes and T. Tao.
(Note: the algorithms derived from this technique also store the SVD of the estimated matrix, but it is computed differently).
PCA or SVD, when used for dimensionality reduction, reduce the number of inputs. This, besides saving computational cost of learning and/or predicting, can sometimes produce more robust models that are not optimal in statistical sense, but have better performance in noisy conditions.
Mathematically, simpler models have less variance, i.e. they are less prone to overfitting. Underfitting, of-course, can be a problem too. This is known as bias-variance dilemma. Or, as said in plain words by Einstein: Things should be made as simple as possible, but not simpler.

Resources