Which machine learning algorithm to use for high dimensional matching? - machine-learning

Let say, I can define a person by 1000 different way, so i have 1,000 features for a given person.
PROBLEM: How can I run machine learning algorithm to determine the best possible match, or closest/most similar person, given the 1,000 features?
I have attempted Kmeans but this appears to be more for 2 features, rather than high dimensions.

You basically after some kind of K Nearest Neighbors Algorithm.
Since your data has high dimension you should explore the following:
Dimensionality Reduction - You may have 1000 features but probably some of them are better than others. So it would be a wise move to apply some kind of Dimensionality Reduction. Easiest and teh first point o start with would be Principal Component Analysis (PCA) which preserves ~90% of the data (Namely use enough Eigen Vectors which match 90% o the energy with their matching Eigen Values). I would assume you'll see a significant reduction from this.
Accelerated K Nearest Neighbors - There are many methods out there to accelerate the search of K-NN in high dimensional case. The K D Tree Algorithm would be a good start for that.

Distance metrics
You can try to apply a distance metric (e.g. cosine similarity) directly.
Supervised
If you know how similar the people are, you can try the following:
Neural networks, Approach #1
Input: 2x the person feature vector (hence 2000 features)
Output: 1 float (similarity of the two people)
Scalability: Linear with the number of people
See neuralnetworksanddeeplearning.com for a nice introduction and Keras for a simple framework
Neural networks, Approach #2
A more advanced approach is called metric learning.
Input: the person feature vector (hence 2000 features)
Output: k floats (you choose k, but it should be lower than 1000)
For training, you have to give the network first on person, store the result, then the second person, store the result, apply a distance metric of your choice (e.g. Euclidean distance) of the two results and then backpropagate the error.

Related

How to find probability of predicted weight of a link in weighted graph

I have an undirected weighted graph. Let's say node A and node B don't have a direct link between them but there are paths connects both nodes through other intermediate nodes. Now I want to predict the possible weight of the direct link between the node A and B as well as the probability of it.
I can predict the weight by finding the possible paths and their average weight but how can I find the probability of it
The problem you are describing is called link prediction. Here is a short tutorial explaining about the problem and some simple heuristics that can be used to solve it.
Since this is an open-ended problem, these simple solutions can be improved a lot by using more complicated techniques. Another approach for predicting the probability for an edge is to use Machine Learning rather than rule-based heuristics.
A recent article called node2vec, proposed an algorithm that maps each node in a graph to a dense vector (aka embedding). Then, by applying some binary operator on a pair of nodes, we get an edge representation (another vector). This vector is then used as input features to some classifier that predicts the edge-probability. The paper compared a few such binary operators over a few different datasets, and significantly outperformed the heuristic benchmark scores across all of these datasets.
The code to compute embeddings given your graph can be found here.

Fuzzy clustering using unsupervised dimensionality reduction

An unsupervised dimensionality reduction algorithm is taking as input a matrix NxC1 where N is the number of input vectors and C1 is the number of components for each vector (the dimensionality of the vector). As a result, it returns a new matrix NxC2 (C2 < C1) where each vector has a lower number of component.
A fuzzy clustering algorithm is taking as input a matrix N*C1 where N, here again, is the number of input vectors and C1 is the number of components for each vector. As a result, it returns a new matrix NxC2 (C2 usually lower than C1) where each component of each vector is indicating the degree to which the vector belongs to the corresponding cluster.
I noticed that input and output of both classes of algorithms are the same in structure, only the interpretation of the results changes. Moreover, there no fuzzy clustering implementation in scikit-learn, hence the following question:
Does it make sense to use a dimensionality reduction algorithm to perform fuzzy clustering?
For instance, is it a non-sense to apply FeatureAgglomeration or TruncatedSVD to a dataset built from TF-IDF vectors extracted from textual data, and interpret the results as a fuzzy clustering?
In some sense, sure. It kind of depends on how you want to use the results downstream.
Consider SVD truncation or excluding principal components. We have projected into a new, variance-preserving space with essentially few other restrictions on the structure of the new manifold. The new coordinate representations of the original data points could have large negative numbers for some elements, which is a little weird. But one could shift and rescale the data without much difficulty.
One could then interpret each dimension as a cluster membership weight. But consider a common use for fuzzy clustering, which is to generate a hard clustering. Notice how easy this is with fuzzy cluster weights (e.g. just take the max). Consider a set of points in the new dimensionally-reduced space, say <0,0,1>,<0,1,0>,<0,100,101>,<5,100,99>. A fuzzy clustering would given something like {p1,p2}, {p3,p4} if thresholded, but if we took the max here (i.e. treat the dimensionally reduced axes as membership, we get {p1,p3},{p2,p4}, for k=2, for instance. Of course, one could use a better algorithm than max to derive hard memberships (say by looking at pairwise distances, which would work for my example); such algorithms are called, well, clustering algorithms.
Of course, different dimensionality reduction algorithms may work better or worse for this (e.g. MDS which focuses on preserving distances between data points rather than variances is more naturally cluster-like). But fundamentally, many dimensionality reduction algorithms implicitly preserve data about the underlying manifold that the data lie on, whereas fuzzy cluster vectors only hold information about the relations between data points (which may or may not implicitly encode that other information).
Overall, the purpose is a little different. Clustering is designed to find groups of similar data. Feature selection and dimensionality reduction are designed to reduce the noise and/or redundancy of the data by changing the embedding space. Often we use the latter to help with the former.

Text Classification - how to find the features that most affected the decision

When using SVMlight or LIBSVM in order to classify phrases as positive or negative (Sentiment Analysis), is there a way to determine which are the most influential words that affected the algorithms decision? For example, finding that the word "good" helped determine a phrase as positive, etc.
If you use the linear kernel then yes - simply compute the weights vector:
w = SUM_i y_i alpha_i sv_i
Where:
sv - support vector
alpha - coefficient found with SVMlight
y - corresponding class (+1 or -1)
(in some implementations alpha's are already multiplied by y_i and so they are positive/negative)
Once you have w, which is of dimensions 1 x d where d is your data dimension (number of words in the bag of words/tfidf representation) simply select the dimensions with high absolute value (no matter positive or negative) in order to find the most important features (words).
If you use some kernel (like RBF) then the answer is no, there is no direct method of taking out the most important features, as the classification process is performed in completely different way.
As #lejlot mentioned, with linear kernel in SVM, one of the feature ranking strategies is based on the absolute values of weights in the model. Another simple and effective strategy is based on F-score. It considers each feature separately and therefore cannot reveal mutual information between features. You can also determine how important a feature is by removing that feature and observe the classification performance.
You can see this article for more details on feature ranking.
With other kernels in SVM, the feature ranking is not that straighforward, yet still feasible. You can construct an orthogonal set of basis vectors in the kernel space, and calculate the weights by kernel relief. Then the implicit feature ranking can be done based on the absolute value of weights. Finally the data is projected into the learned subspace.

importance of PCA or SVD in machine learning

All this time (specially in Netflix contest), I always come across this blog (or leaderboard forum) where they mention how by applying a simple SVD step on data helped them in reducing sparsity in data or in general improved the performance of their algorithm in hand.
I am trying to think (since long time) but I am not able to guess why is it so.
In general, the data in hand I get is very noisy (which is also the fun part of bigdata) and then I do know some basic feature scaling stuff like log-transformation stuff , mean normalization.
But how does something like SVD helps.
So lets say i have a huge matrix of user rating movies..and then in this matrix, I implement some version of recommendation system (say collaborative filtering):
1) Without SVD
2) With SVD
how does it helps
SVD is not used to normalize the data, but to get rid of redundant data, that is, for dimensionality reduction. For example, if you have two variables, one is humidity index and another one is probability of rain, then their correlation is so high, that the second one does not contribute with any additional information useful for a classification or regression task. The eigenvalues in SVD help you determine what variables are most informative, and which ones you can do without.
The way it works is simple. You perform SVD over your training data (call it matrix A), to obtain U, S and V*. Then set to zero all values of S less than a certain arbitrary threshold (e.g. 0.1), call this new matrix S'. Then obtain A' = US'V* and use A' as your new training data. Some of your features are now set to zero and can be removed, sometimes without any performance penalty (depending on your data and the threshold chosen). This is called k-truncated SVD.
SVD doesn't help you with sparsity though, only helps you when features are redundant. Two features can be both sparse and informative (relevant) for a prediction task, so you can't remove either one.
Using SVD, you go from n features to k features, where each one will be a linear combination of the original n. It's a dimensionality reduction step, just like feature selection is. When redundant features are present, though, a feature selection algorithm may lead to better classification performance than SVD depending on your data set (for example, maximum entropy feature selection). Weka comes with a bunch of them.
See: http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Dimensionality_Reduction/Singular_Value_Decomposition
https://stats.stackexchange.com/questions/33142/what-happens-when-you-apply-svd-to-a-collaborative-filtering-problem-what-is-th
The Singular Value Decomposition is often used to approximate a matrix X by a low rank matrix X_lr:
Compute the SVD X = U D V^T.
Form the matrix D' by keeping the k largest singular values and setting the others to zero.
Form the matrix X_lr by X_lr = U D' V^T.
The matrix X_lr is then the best approximation of rank k of the matrix X, for the Frobenius norm (the equivalent of the l2-norm for matrices). It is computationally efficient to use this representation, because if your matrix X is n by n and k << n, you can store its low rank approximation with only (2n + 1)k coefficients (by storing U, D' and V).
This was often used in matrix completion problems (such as collaborative filtering) because the true matrix of user ratings is assumed to be low rank (or well approximated by a low rank matrix). So, you wish to recover the true matrix by computing the best low rank approximation of your data matrix. However, there are now better ways to recover low rank matrices from noisy and missing observations, namely nuclear norm minimization. See for example the paper The power of convex relaxation: Near-optimal matrix completion by E. Candes and T. Tao.
(Note: the algorithms derived from this technique also store the SVD of the estimated matrix, but it is computed differently).
PCA or SVD, when used for dimensionality reduction, reduce the number of inputs. This, besides saving computational cost of learning and/or predicting, can sometimes produce more robust models that are not optimal in statistical sense, but have better performance in noisy conditions.
Mathematically, simpler models have less variance, i.e. they are less prone to overfitting. Underfitting, of-course, can be a problem too. This is known as bias-variance dilemma. Or, as said in plain words by Einstein: Things should be made as simple as possible, but not simpler.

Multivariate Decision Tree learner

A lot univariate decision tree learner implementations (C4.5 etc) do exist, but does actually someone know multivariate decision tree learner algorithms?
Bennett and Blue's A Support Vector Machine Approach to Decision Trees does multivariate splits by using embedded SVMs for each decision in the tree.
Similarly, in Multicategory classification via discrete support vector machines (2009) , Orsenigo and Vercellis embed a multicategory variant of discrete support vector machines (DSVM) into the decision tree nodes.
CART algorithm for decisions tree can be made into a Multivariate. CART is a binary splitting algorithm as opposed to C4.5 which creates a node per unique value for discrete values. They use the same algorithm for MARS as for missing values too.
To create a Multivariant tree you compute the best split at each node, but instead of throwing away all splits that weren't the best you take a portion of those (maybe all), then evaluate all of the data's attributes by each of the potential splits at that node weighted by the order. So the first split (which lead to the maximum gain) is weighted at 1. Then the next highest gain split is weighted by some fraction < 1.0, and so on. Where the weights decrease as the gain of that split decreases. That number is then compared to same calculation of the nodes within the left node if it's above that number go left. Otherwise go right. That's pretty rough description, but that's a multi-variant split for decision trees.
Yes, there are some, such as OC1, but they are less common than ones which make univariate splits. Adding multivariate splits expands the search space enormously. As a sort of compromise, I have seen some logical learners which simply calculate linear discriminant functions and add them to the candidate variable list.

Resources