How and why ot protect client secret in oauth2 - oauth-2.0

Please bear in mind that I'm a noob and rather new to oauth2. I wanted to get a feeling of oauth2 and play around with it. For this I've used offlineimap to connect to my gmail account and retrieving email.
let me copy some config file which I will use to state my general question
oauth2_client_id = clientId
oauth2_client_secret = clientSecretToken
oauth2_request_url = requestUrl
oauth2_refresh_token = refreshToken
type = IMAP
remotehost = imap.gmail.com
remoteuser = xyz#gmail.com
remotepass = mailpasswd('gmail')
As far as I understood the client_id is used to identify me as me :) the request url is just my connecting point on the google site for an outside app. The refresh token is used to generate an actual access token.
The client secret, as far as I understood is a shared secret between the app and gmail to convince gmail that the correct app is asking for certain access.
Question If I understood this correctly the refresh token and the client secret should be "secret". Does this mean it is dangerous to put these information in such a config file? Should we encrypt it like the password (with gpg for example)?
The last point which is not 100 clear to me in oauth2 is the following: Do I understand it correctly that I need to provide my credentials (username / password) since for oauth2 basically assumes that I'm logged in?
Is it fair to say all what oauth2 does on a high level is to ensure that a certain outside app gets a certain access to my gmail. It's a granting for a specific app to specific data. But I still need to provide the my credentials to log in to gmail.

Imagine you use a public code repo as github for example and you push your code there together with the config file you are using. You've just exposed your secrets to the whole world and I cannot tell you how many times people have done stuff like this.
If your code is not public, that's better but make sure that your web server does not serve the config file when requested directly. As long as no one can access it once the whole thing is live, you are safe.
Oh and just to clarify how the refresh token works .... it is used to extend the life of a previous token which either expired or was close to expiration so you don't have to request a new one.
If it was me I would encrypt all 3, meaning ClientID, ClientSecret and RefreshToken.
Think of it this way, the ClientID is your username and the ClientSecret is your password.

But the thing is you're providing login credentials only to your Gmail account and not exposing them to 3rd party service. 3rd party app interacting with your account authenticating via authentication token that it receives after login. This token can be easily invalidated if need and the 3rd party application will no longer have an access. All without the need to change the password.

Related

How to authenticate mobile app to web service using Azure AD?

Currently I have this setup:
At login, and in every subsequent request after login, a mobile application that I have built uses Basic Authentication to authenticate the user with a web service that serves the app with information it requests.
On every request the Authorization header is inspected, the password and username are extracted from the header, the password is hashed using a proprietary DLL (so the web service doesn't actually contain the hashing algorithm) and compared to the hashed password associated with the username that is stored in the database.
I have now been asked to include Azure AD SSO in the login options.
After reading much about the topic, this looks seems to me like the setup:
I'm curious about a few things:
Is this setup correct, more or less?
Does the app send the Identity Token to the web service? If so, how does the webservice validate that token?
Is it correct that the webservice can match the Azure Identity to the DB user using one of the claims in the Security Token?
Where do Access Token fit in this picture?
Thanks for the help!
(Side Note: I know that Basic Authentication is not the preferred way to go in the first scenario. This was a temporary decision till we developed the token handling code, it only works using HTTPS and this is an internal application - you wouldn't be able to activate the app unless you have a code we give you)
I have little experience in azure ad but I think we could talk about your case.
First, whatever id token and access token are both jwt token, so to your web service application, you need to use jwt decode library to decrypt the token and get claims it contains. Here we need to know the difference between id token and access token, and I think you'll know that for your web service application, if it's more likely to play the role of an api application, you need to use access token because this token also contains user information. Then you need to add code in your program to decode the token and check if it's a 'valid' token for the request.(Because you've used azure ad to achieve the login part, you don't need to use your custom login part.)
Next, the signing in feature provided by azure ad requires to use account and password in the tenant which azure ad belongs to, the user accounts may look like xx#xx.onmicrosoft.com, it doesn't required to keep sycn with the accounts in your database, so it's difficult and needless for you to compare the user name obtained from the decoded token with those in your database. Because when your web service received the token(id or access token), that means someone has passed the authentication from azure ad. The token contains user information including role, expired time etc. You need to check if the token has expired and if has the correct scope. (Let's see a common situation, microsoft provides many graph apis to call, when accessing these api, we need to provide access token in request head with matching scope, e.g. https://graph.microsoft.com/v1.0/me
requires a delegated api permission of User.Read)
To sum up here, if your web service just required the users in your database to sign in then can be access, id token and access token are both suitable for you because they both contains user name like 'xx#xx.onmicrosoft.com', what you need to do is decode the token and check if the token has expired and whether this user exists in your database(you may set up a mapping between them).

JWT: what is the advantage of a refresh token when using grant_type=password

I'm following this article to understand refesh tokens.
In my case I have to connect to REST api using grant_type=password, and I receive a token with a 5 minute lifespan. So every 5 minutes I have to issue a POST request passing client-id, username & password to get a new acces token.
The other option would be to issue a POST with a grant_type=refresh_token, without having to send the username & password. In my case I'm consuming an api, so passing the credentials doesn't involve any action from the final user. For me it's just to params more to send on the POST request.
In both cases, I have to issue a new post every 5 minutes.
Is that the only advantage (not needing to pass credentials again) of using the reresh token or is there any other thing I'm missing?
Background info
OAuth 2.0 Password Grant
The Password grant type is a way to exchange a user's credentials for an access token. Because the client application has to collect the user's password and send it to the authorization server, it is not recommended that this grant be used at all anymore.
OAuth 2.0 Refresh Token
The Refresh Token grant type is used by clients to exchange a refresh token for an access token when the access token has expired.
This allows clients to continue to have a valid access token without further interaction with the user.
Consider this.
Lets say that i add my login and password for my twitter account to your application and you then use that to request access from twitter to may account to post. Three months later i have forgotten i have set your awesome app up to do something on my twitter account and i change my password. Your system will break.
Now lets say i used Oauth2 to grant you access to my Google drive account, your awesome app can now do what ever it needs to do on my drive account. Now three months latter i have again forgotten i gave your awesome app access, I have the memory of a gold fish you see. I change my password. Nothing happens your awesome app still has access.
Now consider this, With oauth2 i can grant you access to only read from my google drive account not update it (scope). That and the system knows its not actually me preforming the actions.
With client login (login and password) most of the time it appears to the system that it is the actually owner of the account making the requests. You can also not limit access with client login for the most part you have full access.
note
yes i am ignoring the part about both tokens returned being the expiration time time. Thats because for all intensive purposes they are the same but that depends greatly on how the auth server you are using is set up. They could be set up to only be valid for an hour or a day. They may give you different access scopes, again this differs greatly from auth server to auth server.

Is "Resource Owner Password Credentials" safe in OAuth2?

So, I'm developing an API using slim/slim and league/oauth2-server to manage the OAuth2 connection. OAuth2 will be useful because I will need to use Client Credentials grant between services.
Then, I'm also developing an hybrid app with React Native. This app will requires user login by using e-mail and password or connecting with another services (such as Facebook, Google, Twitter, etc).
And I'm confused about what OAuth2 flow to use for this case. Across the web are a lot of articles saying that Resource Owner Password Credentials is not safe anymore, and we should use instead Authentication Code with PKCE.
But I can't discover or understand how to apply Authentication Code with PKCE in a first party app, because all documentation talks about you will need the uses a browser to get authentication code in redirect_uri.
The flow I imagine is something like that:
User open the app, then insert your credentials username and password;
This screen will connect to API /request_token URI sending { 'grant_type': 'password', 'username': username, 'password': password, 'client_id': CLIENT_ID }, considering it as a public app we can't send client_secret;
The API validates credentials and returns some data such as { "access_token": access_token, "token_type": "JWT", "expires_in": LIFE_SPAN }, here we will use JWT to gerenate the access_token based in public/private key;
Authentication done, the app will store the access_token while it's alive and when it expires will do the flow to refresh_token.
My question: is it safe? Scott Brady did some "aggressive" article talking it's NEVER safe.
How apps does this things? When I use Instagram app, for example, they own the app and the API, I don't need a browser in the User Experience flow. Are modern apps using "Resource Owner Password Credentials" or "Authentication Code with PKCE"? There is a away to avoid insert browser in the flow while using "Authentication Code with PKCE"?
[EDIT] Possible Solution
As Gary Archer said "Auth Code flow with PKCE is recommended - along with logging on via the system browser", but we are not talking about grant permissions to access users data or third-party apps.
As a designer I don't agree that loggin in the first-party app owned by the same API owner requires a browser this is the not the User Experience we are looking for. And all apps we see such as Instagram, Facebook, Uber... we just put your username and password and we have access to your account.
What I will do is create a custom version of Authentication Code with PKCE removing the required_uri.
[EDIT:2] The New Flow
After a lot of search, I found some answers I think was interesting to adapt. As above, I removed redirect_url from flow. Look:
The flow starts in a login screen, when user give your credentials;
Client generates a code_verifier then hashes code_verifier to code_challenge and sends it to Authorization Server with following parameters:
response_type=code : indicates that your server expects to receive an authorization code.
client_id=xxxx : the client id.
client_integrity=xxxx : app integrity check for first-party app.
code_challenge=xxxx : the code challenge generated as previously described.
code_challenge_method=S256 : either plain or S256, depending on whether the challenge is the plain verifier string or the SHA256 hash of the string. If this parameter is omitted, the server will assume plain.
username=xxxx : username to authenticate.
password=xxxx : hashed version of password.
state=xxxx : a random string generated by your application (CSRF protection).
Authorization Server will validates user authentication, stores code_challenge and return the authorization_code with a client_token;
After receive the aauthorization_code and client_token, Client saves the client_token and immediately send authorization_code back to Authorization Server with following parameters:
grant_type=authorization_code : ndicates the grant type of this token request.
code=xxxx : the client will send the authorization code it obtained.
client_id=xxxx : the client id.
code_verifier=xxxx : the code verifier for the PKCE request, that the client originally generated before the authorization request.
Authorization Server will validates all data and, if everything is right, will return the access_token;
Client will set Authorization header with the access_token and always send client_token to every request, it will be only accepted with both values are right;
If access_token expires, then Client will do a request to refresh access_token and get a new one.
Now, I will reproduce this logic to PHP language. If everything goes right and I hope it does, I will be back with definitive answer.
[EDIT] Clarifications
I'm using OAuth2 to user connect with your third-party accounts (Google, Facebook, etc). But user also can log to a local account in my database. For this case, user doesn't need to grant anything at all. So, no makes sense send user to a browser to him does your login.
I wondering if, to this case, local accounts, we can use Resource Owner Password Credentials or it's more safe Authentication Code with PKCE (we already conclude it's a better approuch). But Authentication Code with PKCE requires redirect_uri, do I need uses this redirection to log users into a local account where they don't need to grant access?
Let's go then. After a lot research, I found some approaches that I will apply and may work correctly. So, first of all, here is the challenges:
You must never trust in clients running in client side. There's a lot of concerns about, your applications can be decomplied, modified, the users devices can be with a malware or connection may suffer with a man in the middle attacking (MITM)...
An API Server, even using OAuth2, will be able to only identify WHO is accessing the resources, but not WHAT is accessing. Therefore, any sensitive information will be dangerous, anything can steal it and uses it.
Resource Owner Password Credentials makes part of OAuth2 protocol for authorize resource owner to access your resources. So, it doesn't make part of authentication process and you will your ruin if you treat it like that;
By using ROPC grant type there is no way to know if resource owner is really making that request, what make "easy" a phishing attack. Reminds about "you know WHO and not WHAT". For last, this kind of grant makes easy for whatever thing assumes the user identity;
This grant type also goes against OAuth2 propourse, since OAuth seeks to avoid the password use to access resources. That why many people say to don't use it;
For reinforce, it's important to highlight ROPC is not authenticating user, but it just authorizing him to access the resource server.
And yes, ROPC allows for refresh tokens, but there are two issues: first, client needs resupply credentials each time needed to get a new token; second, if using a long-term access code, then things get more dangerous.
To prevent a malicious thing from arbitrarily using user credentials there are access tokens. They replace passwords and needed to be refreshed in short amount of time. That's why they are so much better than HTTP Basic Authentication.
That's why is recommended to use in modern apps the Authentication Code with PKCE, it provides all features and benefits of using OAuth2 protocol. But, here cames a long discussion and, even, problem for developer community:
To get an Authentication Code some user needs to make your login in a browser, grant access, redirect back to client and, soon, client will receive a code to exchange for an access token.
This scenario works good and NEEDS to be used for third-party apps. But, what if it is a first-party app? When you own the database with user data and you own the "trusted" app, redirect user doesn't make any sense. Right?
At this moment, my question is: how can I use the AuthCode (PKCE) flow without redirect user? And, again, it's important to highlight that talking about OAuth2 protocol is always the same that "to grant client to access resource server" (authorization, not authentication).
So the real question is: why Authorization Code needs a redirection at all? Then, I came with the following answer:
This flow requires to know client credentials and user consensus to turn back an authorization code.
That's why I was wrong in my edits. There's no change needed in OAuth2 protocol (sorry me for think different). For this reason, what OAuth2 needs is a authorization mediator, above your layer. Thus, the authorization code not will turn back to client, but to authorization mediator that, finally, will return it to client. Makes sense?
How it gonna work? Well, will be need 4 different "cores":
Authentication Server: will be responsible to authenticate user credentials and client identity. The main objective is to prove "WHO is the user and WHAT is connecting to get authentication";
Authorization Mediator (one layer above OAuth2): will validate client unique identity to ensure client/user is "know" and can get an access token;
Authorization Server: makes part of OAuth2 implementation, nothing change. Will authorize a client to get your authorization code, access tokens an refresh tokens;
Resource Server: will allow access resources through an access token.
And, then, security techniques we may consider:
API Key: each application (client) will have your own API Key with permissions scopes associated with those keys. By using it, you can gather basic statistics about API usage. Most API services use statistics to enforce rate limits per application to provide different tiers of service or reject suspiciously high frequency calling patterns;
Mutual SSL Authentication: by using this technique client and server exchange and verify each other's public keys. Once the keys are verified, the client and server negotiate a shared secret, a message authentication code (MAC) and encryption algorithms;
HMAC: API Key will be separeted into an ID and a shared secret. Then, as before, the ID is passed with each HTTP request, but the shared secret is used to sign, validates and/or encrypt the information in transit. The client and server will exchange the shared secret with algorithm such as HMAC SHA-256;
Protecting code application: using code obfuscators will make harder to locate and extract sensitive data from app, such as secret shared, api keys, public keys...
Handle user credentials: providing a simple method to user login and prove your identity. After insert valid credentials, server can return a user token (JWT) and emulates a user session with this.
Let's look at flow:
Part one: autheticating user and client;
User will type your credentials and be asked to prove your identity using your e-mail or mobile number, after Client will send user credentials (such as { email, mobile_number, hash ( password ), verification_method }) to Authentication Server route /login;
Authentication Server will validate user credentials and send a one-time password to user confirm your identity (for e-mail or mobile number as choose by user);
Then, user will insert the OTP received and client will send back to Authentication Server route /login-otp including the verification method (such as { otp, verification_method });
At the end, Authentication Server will return a { hash ( shared_secret ) } to be used soon.
Part two: authorizing API access;
When receive shared_secret Client will stores securely at mobile app, then it will ask for a authorization code using PKCE calling /auth with { response_type, client_id, scope, state, code_challenge, code_challenge_method }, Authorization Server will validate credentials and return an authorization code with no redirects;
Later, Client will exchange received code to an access token accessing /token, but it will need to send some extra data: { payload: { grant_type, code, client_id, code_verifier }, timestamp, hash ( some_user_data + timestamp + shared_secret ) };
Authorization Mediator will receive this request and validate trying to generate the same hash generated by user. And redirect all data to Authorization Server that will validate client_id, code and code_verifier responding with an access token;
This new access_token will return to Authorization Mediator and, after, to client granting access to API resources.
Part three: accessing resource server;
Client will each time needs send a call to API /api containing the Authorization header and some extradata with { timestamp, hash ( some_user_data + timestamp + shared_secret ) };
Authorization Mediator will validates the shared_secret hashes, call Resource Server validating access_token and return data.
Part four: refreshing access token;
After access token expires, Client will send a call to /refresh-token containing the Authorization header and some extradata with { payload: { grant_type, refresh_token, client_id, scope }, timestamp, hash ( some_user_data + timestamp + shared_secret ) };
Authorization Mediator will validates the shared_secret hashes, call Authorization Server and return a new fresh token access.
A visual image for this flow:
I don't think it is a perfect strategy, but it replaces Resource Owner Password Credentials to Authentication Code with PKCE and gives some extra security techniques. It's way better then a single and simple authentication method, preserves the OAuth2 protocol and mantaein a lit bit more hard to compromise user data.
Some references and support:
How do popular apps authenticate user requests from their mobile app to their server?
Why does your mobile app need an API key?
Mobile API Security Techniques
Secure Yet Simple Authentication System for Mobile Applications: Shared Secret Based Hash Authentication
Auth Code flow with PKCE is recommended - along with logging on via the system browser. Also the AppAuth pattern is recommended.
https://curity.io/resources/develop/sso/sso-for-mobile-apps-with-openid-connect/
It is tricky and time consuming to implement though - so you need to think about it - sometimes using a cheaper option is good enough. Depends on the sensitivity of data being exposed.
If it helps here are some notes for an Android demo app of mine, which also focuses on usability - and links to a code sample you can run:
https://authguidance.com/2019/09/13/android-code-sample-overview/
First of all, do not invent a OAuth grant simply because you need to adopt it in your application. It will make tings complex to maintain.
In your scenario you need to provide social login (ex:- Login via Google, facebook). This of course a desired functionality one must support. But it doesn't limit you from obtaining end user credentials through a custom registration process. There are many reasons for this, for example not everyone use social media or a Google account. And sometims people prefer to register than sharing user identifier of some other service (yes, this is the opposite end of social login).
So go ahead, provide social login. Store user identifiers when first login through external identity server (ex:- Google). But also, have a good old registration step with password and an email.

How to handle access token in OAuth authorization flow?

I'm building an app that uses Github OAuth, which uses the authorization flow. This is my first time implementing OAuth, so I just wanna make sure i'm doing everything right. Im imagining something like:
User clicks Continue with Github. We call the GH url and provide a frontend app redirect uri. The app accepts a code and sends it to the server. It exchanges it for an access token, then gets the user from an API, gets the id and checks if that exists in the database. If it does, it creates a JWT token and sends a response like [token, ...].
I hope that's how it should be.
The question is what to do if the user doesn't exist. In that case I also want to ask the user for a username in my app (as well as accepting ToS etc). So I have two options: sending back the code or sending the access token.
If I send the code, once the user fills the username, the server will be querying for the access token again. Seems repetitive to me.
But since the access token is a function of my app secret, I'm hesitant for it to be on the client. Although these convince me otherwise:
access token should be a signature of the app secret, and shouldn't leak the app secret (right?)
we can assume app store is secure, because, well, it's the app's state
connection is SSL
So what's the best practice? Cheers!
Not sure about GitHub specifics - but the general Self Sign Up behaviour is for GitHub to manage this for you. After login your app will receive a token with a new user id. You will then need to create that user in your app's back end as well. My write up may help - it is tricky though: https://authguidance.com/2017/10/02/user-data/

Switching from Basic Authentication to OAuth 2.0 for Django & Tastypie

I'm a self taught back end engineer so I'm learning all of this stuff as I go along. For the longest time, I've been using basic authentication for my users. As long as you have the right username and password, you can access all the Tastypie API resources.
Many developers are advising against this approach since each request will contain the username & password. Anyone with the right skills can listen in on the connection between my iOS application and my Django Server and obtain their password.
I wouldn't want to put my user's credentials at risk so I would like to implement a more secure way of authentication. I've been doing a lot of reading and came across OAuth 2.0 which has the whole token approach. The only time when the username and the password is sent to the server is when they are requesting an access token.
After the access token is given (each user will have a unique access token), that token is used to authenticate instead of the username and password.
This way, anyone listening in will only see the token. If the token is exposed, I can easily remove the old token and generate a new token for the user.
Along side this, I would like to make it so that only requests coming from my iOS application are able to access the tastypie resources.(I'm thinking of generating a application key for my app and if third party services want to use the service, I will grant them a unique key as well)
How can go about implementing this into my Django setup? Can I use OAuth2.0 do to this? If I implement this setup, how can I make it so that attackers are unable to obtain the application token?
Take a look at the this project - https://github.com/omab/python-social-auth.
And It's Docs - http://psa.matiasaguirre.net/docs/
It is a great and live project that is up to date with the latest version of Django.
It has integrated social auth for Django with a variety of platforms.

Resources