I have already done some searches, and this question is a duplicate of another post. I am posting this just for future reference.
Is it possible to define SUMPRODUCT without explicitly using variable names x, y?
Original Function:
let SUMPRODUCT x y = List.map2 (*) x y |> List.sum
SUMPRODUCT [1;4] [3;25] // Result: 103
I was hoping to do this:
// CONTAINS ERROR!
let SUMPRODUCT = (List.map2 (*)) >> List.sum
// CONTAINS ERROR!
But F# comes back with an error.
I have already found the solution on another post, but if you have any suggestions please let me know. Thank you.
Function composition only works when the input function takes a single argument. However, in your example, the result of List.map2 (*) is a function that takes two separate arguments and so it cannot be easily composed with List.sum using >>.
There are various ways to work around this if you really want, but I would not do that. I think >> is nice in a few rare cases where it fits nicely, but trying to over-use it leads to unreadable mess.
In some functional languages, the core library defines helpers for turning function with two arguments into a function that takes a tuple and vice versa.
let uncurry f (x, y) = f x y
let curry f x y = f (x, y)
You could use those two to define your sumProduct like this:
let sumProduct = curry ((uncurry (List.map2 (*))) >> List.sum)
Now it is point-free and understanding it is a fun mental challenge, but for all practical purposes, nobody will be able to understand the code and it is also longer than your original explicit version:
let sumProduct x y = List.map2 (*) x y |> List.sum
According to this post:
What am I missing: is function composition with multiple arguments possible?
Sometimes "pointed" style code is better than "pointfree" style code, and there is no good way to unify the type difference of the original function to what I hope to achieve.
Related
I have a recursive function in f# that iterates a string[] of commands that need to be run, each command runs a new command to generate a map to be passed to the next function.
The commands run correctly but are large and cumbersome to read, I believe that there is a better way to order / format these composite functions using pipe syntax however coming from c# as a lot of us do i for the life of me cannot seem to get it to work.
my command is :
let rec iterateCommands (map:Map<int,string array>) commandPosition =
if commandPosition < commands.Length then
match splitCommand(commands.[0]).[0] with
|"comOne" ->
iterateCommands (map.Add(commandPosition,create(splitCommand commands.[commandPosition])))(commandPosition+1)
The closest i have managed is by indenting the function but this is messy :
iterateCommands
(map.Add
(commandPosition,create
(splitCommand commands.[commandPosition])
)
)
(commandPosition+1)
Is it even possible to reformat this in f#? From what i have read i believe it possible, any help would be greatly appreciated
The command/variable types are:
commandPosition - int
commands - string[]
splitCommand string -> string[]
create string[] -> string[]
map : Map<int,string[]>
and of course the map.add map -> map + x
It's often hard to make out what is going on in a big statement with multiple inputs. I'd give names to the individual expressions, so that a reader can jump into any position and have a rough idea what's in the values used in a calculation, e.g.
let inCommands = splitCommand commands.[commandPosition]
let map' = map.Add (commandPosition, inCommands)
iterateCommands map' inCommands
Since I don't know what is being done here, the names aren't very meaningful. Ideally, they'd help to understand the individual steps of the calculation.
It'd be a bit easier to compose the call if you changed the arguments around:
let rec iterateCommands commandPosition (map:Map<int,string array>) =
// ...
That would enable you to write something like:
splitCommand commands.[commandPosition]
|> create
|> (fun x -> commandPosition, x)
|> map.Add
|> iterateCommands (commandPosition + 1)
The fact that commandPosition appears thrice in the composition is, in my opinion, a design smell, as is the fact that the type of this entire expression is unit. It doesn't look particularly functional, but since I don't understand exactly what this function attempts to do, I can't suggest a better design.
If you don't control iterateCommands, and hence can't change the order of arguments, you can always define a standard functional programming utility function:
let flip f x y = f y x
This enables you to write the following against the original version of iterateCommands:
splitCommand commands.[commandPosition]
|> create
|> (fun x -> commandPosition, x)
|> map.Add
|> (flip iterateCommands) (commandPosition + 1)
A very simple example of what I'm trying to do: I know it's possible to write:
let myFunc = anotherFunc
instead of
let myFunc = fun x -> anotherFunc x
I've got two functions fDate1, fDate2 - both of type DateTime -> bool. I need to construct a function that takes a date and verifies if any of fDate1, fDate2 returns true. For now I've invented the following expression:
let myDateFunc = fun x -> (fDate1 x) || (fDate2 x)
Is there a better way of doing these (e.g. using '>>' or high order funcions) ?
I don't think there is anything non-idiomatic with your code. In my opinion, one of the strong points about F# is that you can use it to write simple and easy-to-understand code. From that perspective, nothing could be simpler than writing just:
let myDateFunc x = fDate1 x || fDate2 x
If you had more functions than just two, then it might make sense to write something like:
let dateChecks = [ fDate1; fDate2 ]
let myDateFunc x = dateChecks |> Seq.exists (fun f -> f x)
But again, this only makes sense when you actually need to use a larger number of checks or when you are adding checks often. Unnecessary abstraction is also a bad thing.
You can define a choice combinator:
let (<|>) f g = fun x -> f x || g x
let myDateFunc = fDate1 <|> fDate2
In general, you should use explicit function arguments. The elaborated form of myDateFunc can be written as:
let myDateFunc x = fDate1 x || fDate2 x
As other answers say, your current approach is fine. What is not said is that idiomatic style often produces less readable code. So if you are working in a real project and expect other developers to understand your code, it is not recommended to go too far with unnecessary function composition.
However, for purposes of self-education, you may consider the following trick, a bit in FORTH style:
// Define helper functions
let tup x = x,x
let untup f (x,y) = f x y
let call2 f g (x,y) = f x, g y
// Use
let myFunc =
tup
>> call2 fDate1 fDate2
>> untup (||)
Here, you pass the original value x through a chain of transformations:
make a tuple of the same value;
apply each element of the tuple to corresponding function, obtaining a tuple of results;
"fold" a tuple of booleans with or operator to a single value;
There are many drawbacks with this approach, including that both of fDate1 and fDate2 will be evaluated while it may not be necessary, extra tuples created degrading performance, and more.
I want to apply a function to both members of a homogenous tuple, resulting in another tuple. Following on from my previous question I defined an operator that seemed to make sense to me:
let (||>>) (a,b) f = f a, f b
However, again I feel like this might be a common use case but couldn't find it in the standard library. Does it exist?
I don't think there is any standard library function that does this.
My personal preference would be to avoid too many custom operators (they make code shorter, but they make it harder to read for people who have not seen the definition before). Applying function to both elements of a tuple is logically close to the map operation on lists (which applies a function to all elements of a list), so I would probably define Tuple2.map:
module Tuple2 =
let map f (a, b) = (f a, f b)
Then you can use the function quite nicely with pipelining:
let nums = (1, 2)
nums |> Tuple2.map (fun x -> x + 1)
For starters, I'm a novice in functional programming and F#, therefore I don't know if it's possible to do such thing at all. So let's say we have this function:
let sum x y z = x + y + z
And for some reason, we want to invoke it using the elements from a list as an arguments. My first attempt was just to do it like this:
//Seq.fold (fun f arg -> f arg) sum [1;2;3]
let rec apply f args =
match args with
| h::hs -> apply (f h) hs
| [] -> f
...which doesn't compile. It seems impossible to determine type of the f with a static type system. There's identical question for Haskell and the only solution uses Data.Dynamic to outfox the type system. I think the closest analog to it in F# is Dynamitey, but I'm not sure if it fits. This code
let dynsum = Dynamitey.Dynamic.Curry(sum, System.Nullable<int>(3))
produces dynsum variable of type obj, and objects of this type cannot be invoked, furthermore sum is not a .NET Delegate.So the question is, how can this be done with/without that library in F#?
F# is a statically typed functional language and so the programming patterns that you use with F# are quite different than those that you'd use in LISP (and actually, they are also different from those you'd use in Haskell). So, working with functions in the way you suggested is not something that you'd do in normal F# programming.
If you had some scenario in mind for this function, then perhaps try asking about the original problem and someone will help you find an idiomatic F# approach!
That said, even though this is not recommended, you can implement the apply function using the powerful .NET reflection capabilities. This is slow and unsafe, but if is occasionally useful.
open Microsoft.FSharp.Reflection
let rec apply (f:obj) (args:obj list) =
let invokeFunc =
f.GetType().GetMethods()
|> Seq.find (fun m ->
m.Name = "Invoke" &&
m.GetParameters().Length = args.Length)
invokeFunc.Invoke(f, Array.ofSeq args)
The code looks at the runtime type of the function, finds Invoke method and calls it.
let sum x y z = x + y + z
let res = apply sum [1;2;3]
let resNum = int res
At the end, you need to convert the result to an int because this is not statically known.
A real F# noob question, but what is |> called and what does it do?
It's called the forward pipe operator. It pipes the result of one function to another.
The Forward pipe operator is simply defined as:
let (|>) x f = f x
And has a type signature:
'a -> ('a -> 'b) -> 'b
Which resolves to: given a generic type 'a, and a function which takes an 'a and returns a 'b, then return the application of the function on the input.
You can read more detail about how it works in an article here.
I usually refer to |> as the pipelining operator, but I'm not sure whether the official name is pipe operator or pipelining operator (though it probably doesn't really matter as the names are similar enough to avoid confusion :-)).
#LBushkin already gave a great answer, so I'll just add a couple of observations that may be also interesting. Obviously, the pipelining operator got it's name because it can be used for creating a pipeline that processes some data in several steps. The typical use is when working with lists:
[0 .. 10]
|> List.filter (fun n -> n % 3 = 0) // Get numbers divisible by three
|> List.map (fun n -> n * n) // Calculate squared of such numbers
This gives the result [0; 9; 36; 81]. Also, the operator is left-associative which means that the expression input |> f |> g is interpreted as (input |> f) |> g, which makes it possible to sequence multiple operations using |>.
Finally, I find it quite interesting that pipelining operaor in many cases corresponds to method chaining from object-oriented langauges. For example, the previous list processing example would look like this in C#:
Enumerable.Range(0, 10)
.Where(n => n % 3 == 0) // Get numbers divisible by three
.Select(n => n * n) // Calculate squared of such numbers
This may give you some idea about when the operator can be used if you're comming fromt the object-oriented background (although it is used in many other situations in F#).
As far as F# itself is concerned, the name is op_PipeRight (although no human would call it that). I pronounce it "pipe", like the unix shell pipe.
The spec is useful for figuring out these kinds of things. Section 4.1 has the operator names.
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
Don't forget to check out the library reference docs:
http://msdn.microsoft.com/en-us/library/ee353754(v=VS.100).aspx
which list the operators.