Xtext define number of occurrence - xtext

Being new to Xtext I would like to know how to define the upper and lower boundaries regarding the occurrence of a letter.
I know of the following expressions / operators
exactly one (the default, no operator)
one or none (operator ?)
any (zero or more, operator *)
one or more (operator +)
Given the examples
<IS123A4>
<IS12>
<ISB123455>
how do I describe the grammar for the rule that after "IS" 1-25 alphanumeric letters may appear.
Currently, I have
`terminal ISCONCEPTAME : '<IS' ALPHANUM ALPHANUM? ALPHANUM? ALPHANUM?.....'>';`
`terminal ALPHANUM: ('a'..'z'|'A'..'Z'|'_'|INT);`
However, I am not sure if it is the right way to do it. I was thinking about something like
`terminal ISCONCEPTAME : '<IS' ALPHANUM{1,25} '>';`
Thanks for any input!

Related

How to parse dot operator in language syntax?

Let's say I'm writing a parser that parses the following syntax:
foo.bar().baz = 5;
The grammar rules look something like this:
program: one or more statement
statement: expression followed by ";"
expression: one of:
- identifier (\w+)
- number (\d+)
- func call: expression "(" ")"
- dot operator: expression "." identifier
Two expressions have a problem, the func call and the dot operator. This is because the expressions are recursive and look for another expression at the start, causing a stack overflow. I will focus on the dot operator for this quesition.
We face a similar problem with the plus operator. However, rather than using an expression you would do something like this to solve it (look for a "term" instead):
add operation: term "+" term
term: one of:
- number (\d+)
- "(" expression ")"
The term then includes everything except the add operation itself. To ensure that multiple plus operators can be chained together without using parenthesis, one would rather do:
add operation: term, one or more of ("+" followed by term)
I was thinking a similar solution could for for the dot operator or for function calls.
However, the dot operator works a little differently. We always evaluate from left-to-right and need to allow full expressions so that you can do function calls etc. in-between. With parenthesis, an example might be:
(foo.bar()).baz = 5;
Unfortunately, I do not want to require parenthesis. This would end up being the case if following the method used for the plus operator.
How could I go about implementing this?
Currently my parser never peeks ahead, but even if I do look ahead, it still seems tricky to accomplish.
The easy solution would be to use a bottom-up parser which doesn't drop into a bottomless pit on left recursion, but I suppose you have already rejected that solution.
I don't understand your objection to using a looping construct, though. Postfix modifiers like field lookup and function call are not really different from binary operators like addition (except, of course, for the fact that they will not need to claim an eventual right operand). Plus and minus intermingle freely, which you can parse with a repetition like:
additive: term ( '+' term | '-' term )*
Similarly, postfix modifiers can be easily parsed with something like:
postfixed: atom ( '.' ID | '(' opt-expr-list `)` )*
I'm using a form of extended BNF: parentheses group; | separates alternatives and binds less stringly than concatenation; and * means "zero or more repetitions" of the atom on its left.
Another postfix operator which falls into the same category is array/map subscripting ('[' expr ']'), although you might also have other postfix operators.
Note that like the additive syntax above, selecting the appropriate alternative does not require looking beyond the next token. It's hard to parse without being able to peek one token into the future. Fortunately, that's very little overhead.
One way could be for the dot operator to parse a non-dot expression, that is, a rule that is the same as expression but without the dot operator. This prevents recursion.
Then, when the non-dot expression has been parsed, check if a dot and an identifier follows. If this is not the case, we are done. If this is the case, wrap the current node up in a dot operation node. Then, keep track of the entire string text that has been parsed for this operation so far. Then revert everything back to before the operation was being parsed, and now re-parse a "custom expression", where the first directly-nested expression would really be trying to match the exact string that was parsed before rather than a real expression. Repeat until there are no more dot-identifier pairs (this should happen automatically by the new "custom expression").
This is messy, complicated and possibly slow, and I'm not entirely sure if it'll work but I'll try it out. I'd appreciate alternative solutions.

Lex won't recognize double operators- !=, :=, <<, etc. Can I give a Lex expression precedence?

Trying to parse operators (+, -, =, <<, !=), using states like
%{
%}
OP ["+"|";"|":"|","|"*"|"/"|"="|"("|")"|"{"|"}"|"*"|"#"|"$"|
"<"|">"|"&"|"|"|"!"|]
DOUBOP [":="|".."|"<<"|">>"|"<>"|"<="|">="|"=>"|"**"|"!="|"{:"|"}:"|"\-"]
and later on
{DOUBOP} { printf("%s (operator)\n", yytext); }
{OP} { printf("%s (operator)\n", yytext); }
but Lex is identifying operators like "<<" as "<" and "<". I thought since it was in double quotes this would work, but I see that's not the case.
Is there anyway I can give a regular expression precedence, ie have lex check for a double operator first, and then a single operator?
Thanks in advance.
[...] is a character class, not an eccentric type of parenthesis. If you want to parenthesize a sub-expression in a pattern, use ordinary parentheses. In this case, however, parentheses are not necessary. (Indeed, most of the quotes aren't necessary either, but they don't hurt and some of them would be useful.)
"==" recognises the two character-sequence consisting of two equal signs. "=="|"++" recognizes either two equal signs or two plus signs.
By contrast, ["=="] recognises a single character, which could be either a quote or an equals sign. Since a character class is a set, the fact that each of those appears twice is irrelevant (although I think it would save a lot of grief if flex issued a warning). Similarly, ["=="|"<<"] recognises a single character if it is a quote, an equals sign, a vertical bar or a less than sign.
Flex pattern syntax is documented in the flex manual. It differs in a few ways from regexes in other systems, so it's worth reading the short document. However, character classes are mostly the same in all regex syntaxes in common use, especially the use of square brackets to delimit the set.
An easier way is to put all single characters together, and run the * command on the end up curly braces.
i.e.
OP ["+"|";"|":"|","|"*"|"/"|"="|"("|")"|"{"|"}"|"*"|"#"|"$"|
"<"|">"|"&"|"|"|"!"|]*

Match the input with string using lex

I'm trying to match the prefix of the string Something. For example, If input So,SOM,SomeTH,some,S, it is all accepted because they are all prefixes of Something.
My code
Ss[oO]|Ss[omOMOmoM] {
printf("Accept Something": %s\n", yytext);
}
Input
Som
Output
Accept Something: So
Invalid Character
It's suppose to read Som because it is a prefix of Something. I don't get why my code doesn't work. Can anyone correct me on what I am doing wrong?
I don't know what you think the meaning of
Ss[oO]|Ss[omOMOmoM]
is, but what it matches is either:
an S followed by an s followed by exactly one of the letters o or O, or
an S followed by an s followed by exactly one of the letters o, O, m or M. Putting a symbol more than once inside a bracket expression has no effect.
Also, I don't see how that could produce the output you report. Perhaps there was a copy-and-paste error, or perhsps you have other pattern rules.
If you want to match prefixes, use nested optional matches:
s(o(m(e(t(h(i(ng?)?)?)?)?)?)?)?
If you want case-insensitive matcges, you could write out all the character classes, but that gets tiriesome; simpler is to use a case-insensitve flag:
(?i:s(o(m(e(t(h(i(ng?)?)?)?)?)?)?)?)
(?i: turns on the insensitive flag, until the matching close parenthesis.
In practice, this is probably not what you want. Normally, you will want to recognise a complete word as a token. You could then check to see if the word is a prefix in the rule action:
[[:alpha:]]+ { if (yyleng <= strlen("something") && 0 == strncasemp(yytext, "something", yyleng) {
/* do something */
}
}
There is lots of information in the Flex manual.
Right now your code (as shown) should only match "Sso" or "SsO" or "Ssm" or "SsM".
You have two alternatives that each start with Ss (without square brackets) so those will be matched literally. That's followed by either [oO] or [omOMomoM], but the characters in square brackets represent alternatives, so that's equivalent to [oOmM] --i.e., any one character of of o, O, m or M.
I'd start with: %option caseless to make it a case-insensitive scanner, so you don't have to list the upper- and lower-case equivalents of every letter.
Then it's probably easiest to just list the alternatives literally:
s|so|som|some|somet|someth|somethi|somethin|something { printf("found prefix"); }
I guess you can make the pattern a bit shorter (at least in the source code) by doing something on this order:
s(o(m(e(t(h(i(n(n(g)?)?)?)?)?)?)?)?)? { printf("found prefix"); }
Doesn't seem like a huge improvement to me, but some might find it more attractive than I do.
If you don't want to use %option caseless the basic idea helps more:
[sS]([oO]([mM]([eE]([tT]([hH]([iI]([nN]([gG])?)?)?)?)?)?)?)? { printf("found prefix"); }
Listing every possible combination of upper and lower case would get tedious.

Lexer rule optional suffix not matching, when it should match

Using ANTLR 3, my lexer has rule
SELECT_ASSIGN:
'SELECT' WS+ IDENTIFIER WS+ 'ASSIGN' WS+ (('TO'|'USING') WS+)?
using this these match correctly
SELECT VAR1 ASSIGN TO
SELECT VAR1 ASSIGN USING
and this also matches
SELECT VAR1 ASSIGN FOO
However this does not match
SELECT VAR1 ASSIGN TWO
Whereas I have marked TO|USING as optional in the rule.
From generated Java code I see...
When lexer notices T of TWO, it goes to match('TO')
but since does not find O after T
then generates failure.... and returns all the way from the rule -- hence not matching it.
How do I get my lexer rule to match, when input has word with chars starting with suffixed optional part of the rule
Basically I want my rule to match this also (beside what it already matches - as lised at the start):
SELECT VAR1 ASSIGN TWO
Kindly suggest how I approach/resolve this situation.
NOTE:
Such rules are recommended in the parser - But I have this in lexer - because I do not want to parse the entire input by the parser, and want to parse only content of interest. So using such rules in lexer, I locate sections which I really want to parse by the parser.
UPDATE 1
I could circumvent this problem by making 2 rules, like so:
SELECT_ASSIGN_USING_TO
: tok='SELECT' WS+ name=IDENTIFIER WS+ 'ASSIGN' WS+ ('USING'|'TO')
SELECT_ASSIGN
: tok='SELECT' WS+ name=IDENTIFIER WS+ 'ASSIGN'
But is it possible to do the desired in one lexer rule?
An approach to get this in one rule, suggested by my senior - use syntactic predicate
SELECT_ASSIGN
: tok='SELECT' WS+ name=IDENTIFIER WS+ 'ASSIGN'
(
(WS+ ('TO'|'USING') WS+)=> (WS+ ('TO'|'USING') WS+)
| (WS+)
)
Tokens match a complete char sequence or none. It cannot match partially and the grammar rule determines which exactly. You cannot expect a rule for TO to match TWO. If you want TWO to match too you have to add it to your lexer rule.
A few notes here:
The solution your "senior" gave you makes no sense at all. A
syntactic predicate is a kinda lookahead to guide the parser in case
of ambiquities. There are no ambiquities involved here.
Writing
the entire SELECT_ASSIGN rule as a lexer rule is very uncommon and
not flexible. A lexer rule should not be used for entire sentences,
but only for a small set of characters to find tokens to assign them
a type (usually elementary structures of a language like string,
number, comment etc.).
ANTLR3 is totally outdated and I wonder why this is still used in your class. ANTLR4 is out since 5 years and should be the choice for any new project.

REBOL path operator vs division ambiguity

I've started looking into REBOL, just for fun, and as a fan of programming languages, I really like seeing new ideas and even just alternative syntaxes. REBOL is definitely full of these. One thing I noticed is the use of '/' as the path operator which can be used similarly to the '.' operator in most object-oriented programming languages. I have not programmed in REBOL extensively, just looked at some examples and read some documentation, but it isn't clear to me why there's no ambiguity with the '/' operator.
x: 4
y: 2
result: x/y
In my example, this should be division, but it seems like it could just as easily be the path operator if x were an object or function refinement. How does REBOL handle the ambiguity? Is it just a matter of an overloaded operator and the type system so it doesn't know until runtime? Or is it something I'm missing in the grammar and there really is a difference?
UPDATE Found a good piece of example code:
sp: to-integer (100 * 2 * length? buf) / d/3 / 1024 / 1024
It appears that arithmetic division requires whitespace, while the path operator requires no whitespace. Is that it?
This question deserves an answer from the syntactic point of view. In Rebol, there is no "path operator", in fact. The x/y is a syntactic element called path. As opposed to that the standalone / (delimited by spaces) is not a path, it is a word (which is usually interpreted as the division operator). In Rebol you can examine syntactic elements like this:
length? code: [x/y x / y] ; == 4
type? first code ; == path!
type? second code
, etc.
The code guide says:
White-space is used in general for delimiting (for separating symbols).
This is especially important because words may contain characters such as + and -.
http://www.rebol.com/r3/docs/guide/code-syntax.html
One acquired skill of being a REBOler is to get the hang of inserting whitespace in expressions where other languages usually do not require it :)
Spaces are generally needed in Rebol, but there are exceptions here and there for "special" characters, such as those delimiting series. For instance:
[a b c] is the same as [ a b c ]
(a b c) is the same as ( a b c )
[a b c]def is the same as [a b c] def
Some fairly powerful tools for doing introspection of syntactic elements are type?, quote, and probe. The quote operator prevents the interpreter from giving behavior to things. So if you tried something like:
>> data: [x [y 10]]
>> type? data/x/y
>> probe data/x/y
The "live" nature of the code would dig through the path and give you an integer! of value 10. But if you use quote:
>> data: [x [y 10]]
>> type? quote data/x/y
>> probe quote data/x/y
Then you wind up with a path! whose value is simply data/x/y, it never gets evaluated.
In the internal representation, a PATH! is quite similar to a BLOCK! or a PAREN!. It just has this special distinctive lexical type, which allows it to be treated differently. Although you've noticed that it can behave like a "dot" by picking members out of an object or series, that is only how it is used by the DO dialect. You could invent your own ideas, let's say you make the "russell" command:
russell [
x: 10
y: 20
z: 30
x/y/z
(
print x
print y
print z
)
]
Imagine that in my fanciful example, this outputs 30, 10, 20...because what the russell function does is evaluate its block in such a way that a path is treated as an instruction to shift values. So x/y/z means x=>y, y=>z, and z=>x. Then any code in parentheses is run in the DO dialect. Assignments are treated normally.
When you want to make up a fun new riff on how to express yourself, Rebol takes care of a lot of the grunt work. So for example the parentheses are guaranteed to have matched up to get a paren!. You don't have to go looking for all that yourself, you just build your dialect up from the building blocks of all those different types...and hook into existing behaviors (such as the DO dialect for basics like math and general computation, and the mind-bending PARSE dialect for some rather amazing pattern matching muscle).
But speaking of "all those different types", there's yet another weirdo situation for slash that can create another type:
>> type? quote /foo
This is called a refinement!, and happens when you start a lexical element with a slash. You'll see it used in the DO dialect to call out optional parameter sets to a function. But once again, it's just another symbolic LEGO in the parts box. You can ascribe meaning to it in your own dialects that is completely different...
While I didn't find any written definitive clarification, I did also find that +,-,* and others are valid characters in a word, so clearly it requires a space.
x*y
Is a valid identifier
x * y
Performs multiplication. It looks like the path operator is just another case of this.

Resources