The best way to classify vector images from photos? - image-processing

I need to separate images into three categories: vectors, photos with vectors and pure photos. The classifying needs to happen in "real-time" so this leads me to my question: what would be good algorithm for classifying these types of images from accuracy/performance tradeoff perspective?
Images are not my speciality so all pointers are appreciated.
For performance heavy side of things I tried tensorflow with inception to get a baseline however the model reached only ~88% accuracy. I conclude this is due Inception being a photo classifying model and something like a solid color vector doesn't really fit into its world.
There must be easier/more lightweight solution than deep learning to detect such a different type of images?
EXAMPLES:
Photo:
Photo with vector:
Vector:

Related

image augmentation algorithms for preparing deep learning training set

To prepare large amounts of data sets for training deep learning-based image classification models, we usually have to rely on image augmentation methods. I would like to know what are the usual image augmentation algorithms, are there any considerations when choosing them?
The litterature on data augmentation is very very large and very dependent on your kind of applications.
The first things that come to my mind are the galaxy competition's rotations and Jasper Snoeke's data augmentation.
But really all papers have their own tricks to get good scores on special datasets for exemples stretching the image to a specific size before cropping it or whatever and this in a very specific order.
More practically to train models on the likes of CIFAR or IMAGENET use random crops and random contrast, luminosity perturbations additionally to the obvious flips and noise addition.
Look at the CIFAR-10 tutorial on TF website it is a good start. Plus TF now has random_crop_and_resize() which is quite useful.
EDIT: The papers I am referencing here and there.
It depends on the problem you have to address, but most of the time you can do:
Rotate the images
Flip the image (X or Y symmetry)
Add noise
All the previous at the same time.

Object detection using a fish eye lens

I'm trying to use the hog detector in openCV, to detect 3 types of object from a video feed through a fish eye. The types are:
People
Books (when held by some person)
Chairs
The snapshot of the video I have looks like this image from this website - :
I setup the hog classifier using the default people detector and tried do first detect the people. I noticed when the people were of the size that you would expect from a non-fish eye lens (something you would get with a standard 35mm lens), they would get detected. If not the people would not get detected. This seemed logical as the classifier would expect people to be a standard size.
I was wondering how I could modify the classifier to detect people thorough a fish eye lens. The options I see are these:
Undistort the fish eye effect and run the classifier - I do not like to do this, because currently, I'm not in a position to calibrate the camera and get the distortion coefficients
Distort people images from a people image data set to around the distortion I would get through my video and re-train the classifier - I think this would work, but would like to understand would this not work as I think it work.
My question is:
What would be a valid approach for this problem? Will #2 of my options work for all 3 types of objects (people, books and chairs).
What is good classifier that can be trained to identify the 3 types of objects (cascade or hog or anything else - please suggest a library as well)? Will my #2 method of distorting and training with positive and negative examples be a good solution?
Retraining the HOG cascade to the performance level of the cascade included with OpenCV would be a pretty involved process. You would also have to simulate the distortion of your specific lens to modify the training data.
For the quickest solution I would recommend your first option of distorting the image. If you are willing to put in the time and resources to retrain the classifier (which you may have to do depending on how you are detecting chairs and books) then there are some publicly available pedestrian datasets that will be useful.
1) http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
2) http://pascal.inrialpes.fr/data/human/
Its unlikely that you'll be able to find a chair cascade due to the variability in chair design. I would recommend you train your own cascade on the specific chairs you intend to detect. I don't know of any existing cascade for books and a quick google search didn't yield any promising results. A good resource for data if you intend on training your own cascade for books is ImageNet.

Image Similarity - Deep Learning vs hand-crafted features

I am doing research in the field of computer vision, and am working on a problem related to finding visually similar images to a query image. For example, finding t-shirts of similar colour with similar patterns (Striped/ Checkered), or shoes of similar colour and shape, and so on.
I have explored hand-crafted image features such as Color Histograms, Texture features, Shape features (Histogram of Oriented Gradients), SIFT and so on. I have also read up literature about Deep Neural Networks (Convolutional Neural Networks), which have been trained on massive amounts of data and are currently state of the art in Image Classification.
I was wondering if the same features (extracted from the CNN's) can also be used for my project - finding fine-grained similarities between images. From what I understand, the CNNs have learnt good representative features that can help classify images - for example, be it a red shirt or a blue shirt or an orange shirt, it is able to identify that the image is a shirt. However it doesn't understand that an orange shirt looks more similar to a red shirt than a blue shirt does, and hence it is not able to capture these similarities.
Please correct me if I am wrong. I would like to know if there are any Deep Neural Networks that capture these similarities, and have proven to be superior to the hand-crafted features. Thanks in advance.
For your task, a CNN is definitely worth a try!
Many researchers used networks which are pretrained for Image Classification and obtained state-of-the-art results on fine-grained classification. For example, trying to classify birds species or cars.
Now, your task is not classification, but it is related. You can think about similarity as some geometric distance between features, which are basically vectors. Thus, you may carry out some experiments computing the distance between the feature vectors for all your training images (the reference) and the feature vector extracted from the query image.
CNNs features extracted from the first layers of the net should be more related to color or other graphical traits, rather than more "semantical" ones.
Alternatively, there is some work on learning directly a similarity metric through CNN, see here for example.
A little bit out-dated, but it can still be useful for other people. Yes, CNNs can be used for image similarity and I used before. As Flavio pointed out, for a simple start, you can use a pre-trained CNN of your choice such as Alexnet,GoogleNet etc.. and then use it as feature extractor. You can compare the features based on the distance, similar pictures will have a smaller distance between their feature vectors.

Using Haar Cascade Classifier in OpenCV to count cars in an aerial image of a parking lot

I am wanting to count the number of cars in aerial images of parking lots. After some research I believe that Haar Cascade Classifiers might be an option for this. An example of an image I will be using would be something similar to a zoomed in image of a parking lot from Google Maps.
My current plan to accomplish this is to train a custom Haar Classifier using cars that I crop out of images in only one orientation (up and down), and then attempt recognition multiple times while rotating the image in 15 degree increments. My specific questions are:
Is using a Haar Classifier a good approach here or is there something better?
Assuming this is a good approach, when cropping cars from larger images for training data would it be better to crop a larger area that could possibly contain small portions of cars in adjacent parking spaces (although some training images would obviously include solo cars, cars with only one car next to them, etc.) or would it be best to crop the cars as close to their outline as possible?
Again assuming I am taking this approach, how could I avoid double counting cars? If a car was recognized in one orientation, I don't want it to be counted again. Is there some way that I could mark a car as counted and have it ignored?
I think in your case I would not go for Haar features, you should search for something that is rotation invariant.
I would recommend to approach this task in the following order:
Create a solid training / testing data set and have a good look into papers about getting good negative samples. In my experience good negative samples have a great deal of influence on the resulting quality of your classifier. It makes your life a lot easier if all your samples are of the same image size. Add different types of negative samples, half cars, just pavement, grass, trees, people etc...
Before starting your search for a classifier make sure that you have your evaluation pipeline in order, do a 10 fold cross evaluation with the simplest Haar classifier possible. Now you have a baseline. Try to keep the software for all features you tested working in caseou find out that your data set needs adjustment. Ideally you can just execute a script and rerun your whole evaluation on the new data set automatically.
The problem of counting cars multiple times will not be of such importance when you can find a feature that is rotation invariant. Still non maximum suppression will be in order becaus you might not get a good recognition with simple thresholding.
As a tip, you might consider HOG features, I did have some good results on cars with them.

Face Recognition Logic

I want to develop an application in which user input an image (of a person), a system should be able to identify face from an image of a person. System also works if there are more than one persons in an image.
I need a logic, I dont have any idea how can work on image pixel data in such a manner that it identifies person faces.
Eigenface might be a good algorithm to start with if you're looking to build a system for educational purposes, since it's relatively simple and serves as the starting point for a lot of other algorithms in the field. Basically what you do is take a bunch of face images (training data), switch them to grayscale if they're RGB, resize them so that every image has the same dimensions, make the images into vectors by stacking the columns of the images (which are now 2D matrices) on top of each other, compute the mean of every pixel value in all the images, and subtract that value from every entry in the matrix so that the component vectors won't be affine. Once that's done, you compute the covariance matrix of the result, solve for its eigenvalues and eigenvectors, and find the principal components. These components will serve as the basis for a vector space, and together describe the most significant ways in which face images differ from one another.
Once you've done that, you can compute a similarity score for a new face image by converting it into a face vector, projecting into the new vector space, and computing the linear distance between it and other projected face vectors.
If you decide to go this route, be careful to choose face images that were taken under an appropriate range of lighting conditions and pose angles. Those two factors play a huge role in how well your system will perform when presented with new faces. If the training gallery doesn't account for the properties of a probe image, you're going to get nonsense results. (I once trained an eigenface system on random pictures pulled down from the internet, and it gave me Bill Clinton as the strongest match for a picture of Elizabeth II, even though there was another picture of the Queen in the gallery. They both had white hair, were facing in the same direction, and were photographed under similar lighting conditions, and that was good enough for the computer.)
If you want to pull faces from multiple people in the same image, you're going to need a full system to detect faces, pull them into separate files, and preprocess them so that they're comparable with other faces drawn from other pictures. Those are all huge subjects in their own right. I've seen some good work done by people using skin color and texture-based methods to cut out image components that aren't faces, but these are also highly subject to variations in training data. Color casting is particularly hard to control, which is why grayscale conversion and/or wavelet representations of images are popular.
Machine learning is the keystone of many important processes in an FR system, so I can't stress the importance of good training data enough. There are a bunch of learning algorithms out there, but the most important one in my view is the naive Bayes classifier; the other methods converge on Bayes as the size of the training dataset increases, so you only need to get fancy if you plan to work with smaller datasets. Just remember that the quality of your training data will make or break the system as a whole, and as long as it's solid, you can pick whatever trees you like from the forest of algorithms that have been written to support the enterprise.
EDIT: A good sanity check for your training data is to compute average faces for your probe and gallery images. (This is exactly what it sounds like; after controlling for image size, take the sum of the RGB channels for every image and divide each pixel by the number of images.) The better your preprocessing, the more human the average faces will look. If the two average faces look like different people -- different gender, ethnicity, hair color, whatever -- that's a warning sign that your training data may not be appropriate for what you have in mind.
Have a look at the Face Recognition Hompage - there are algorithms, papers, and even some source code.
There are many many different alghorithms out there. Basically what you are looking for is "computer vision". We had made a project in university based around facial recognition and detection. What you need to do is google extensively and try to understand all this stuff. There is a bit of mathematics involved so be prepared. First go to wikipedia. Then you will want to search for pdf publications of specific algorithms.
You can go a hard way - write an implementaion of all alghorithms by yourself. Or easy way - use some computer vision library like OpenCV or OpenVIDIA.
And actually it is not that hard to make something that will work. So be brave. A lot harder is to make a software that will work under different and constantly varying conditions. And that is where google won't help you. But I suppose you don't want to go that deep.

Resources