Swift 3 multithreading using which queue? - ios

I'm going through Stanford CP 193P, looking at a Twitter client.
When a network is called, I assumed it would always be called on the main queue unless invoked on another queue. However without dispatch back onto the main queue (as below) the App does not work as expected - meaning we must not be on the main queue. How?
When tweets are fetched the following closure is used - and to update the UI means that the work needs to be done on the main thread (DispatchQueue.main.async)
request.fetchTweets { [weak self] (newTweets) in
DispatchQueue.main.async {
if request == self?.lastTwitterRequest {
self?.tweets.insert(newTweets, at: 0)
self?.tableView.insertSections([0], with: .fade)
}
}
}
This calls a convenience function that is commented as "handler is not necessarily invoked on the main queue". I can't find anywhere that declares which queue it is invoked on, so I assume it is on the main queue?
// convenience "fetch" for when self is a request that returns Tweet(s)
// handler is not necessarily invoked on the main queue
open func fetchTweets(_ handler: #escaping ([Tweet]) -> Void) {
fetch { results in
var tweets = [Tweet]()
var tweetArray: NSArray?
if let dictionary = results as? NSDictionary {
if let tweets = dictionary[TwitterKey.Tweets] as? NSArray {
tweetArray = tweets
} else if let tweet = Tweet(data: dictionary) {
tweets = [tweet]
}
} else if let array = results as? NSArray {
tweetArray = array
}
if tweetArray != nil {
for tweetData in tweetArray! {
if let tweet = Tweet(data: tweetData as? NSDictionary) {
tweets.append(tweet)
}
}
}
handler(tweets)
}
}
I did not write the Twitter framework, and it appears to have been authored by the Stanford instructor.

You ask:
This calls a convenience function that is commented as "handler is not necessarily invoked on the main queue". I can't find anywhere that declares which queue it is invoked on, so I assume it is on the main queue?
No, you cannot assume it is on the main queue. In fact, it sounds like it's explicitly warning you that it isn't. The only time you can be assured it's on the main queue, is if it explicitly says so.
For example, if the underlying framework is using URLSession, it, by default, does not use the main queue for its completion handlers. The init(configuration:​delegate:​delegate​Queue:​) documentation warns us that the queue parameter is as follows:
An operation queue for scheduling the delegate calls and completion handlers. The queue should be a serial queue, in order to ensure the correct ordering of callbacks. If nil, the session creates a serial operation queue for performing all delegate method calls and completion handler calls.
And for a given framework, it may be completely unrelated to URLSession queue behavior. It might also be using its own queues for completion handlers.
Bottom line, if the framework doesn't explicitly assure you that the closure always runs on the main queue, you should never assume it does. So, yes, in the absence of any assurances to this effect, you'd want to dispatch any UI stuff to the main queue and do the appropriate synchronization for any model objects.
You can, if you have code that must run on a particular thread and you want to make sure this is the case, you can add a dispatchPrecondition to test if it's on the main thread. The behavior of this changes between debug builds and release builds, but it's a quick way of quickly testing if it's using the queue you think it is:
dispatchPrecondition(condition: .onQueue(.main))

Related

How to use gcd barrier in iOS?

I want to use gcd barrier implement a safe store object. But it not work correctly. The setter sometime is more early than the getter. What's wrong with it?
https://gist.github.com/Terriermon/02c446d1238ad6ec1edb08b607b1bf05
class MutiReadSingleWriteObject<T> {
let queue = DispatchQueue(label: "com.readwrite.concurrency", attributes: .concurrent)
var _object:T?
var object: T? {
#available(*, unavailable)
get {
fatalError("You cannot read from this object.")
}
set {
queue.async(flags: .barrier) {
self._object = newValue
}
}
}
func getObject(_ closure: #escaping (T?) -> Void) {
queue.async {
closure(self._object)
}
}
}
func testMutiReadSingleWriteObject() {
let store = MutiReadSingleWriteObject<Int>()
let queue = DispatchQueue(label: "com.come.concurrency", attributes: .concurrent)
for i in 0...100 {
queue.async {
store.getObject { obj in
print("\(i) -- \(String(describing: obj))")
}
}
}
print("pre --- ")
store.object = 1
print("after ---")
store.getObject { obj in
print("finish result -- \(String(describing: obj))")
}
}
Whenever you create a DispatchQueue, whether serial or concurrent, it spawns its own thread that it uses to schedule and run work items on. This means that whenever you instantiate a MutiReadSingleWriteObject<T> object, its queue will have a dedicated thread for synchronizing your setter and getObject method.
However: this also means that in your testMutiReadSingleWriteObject method, the queue that you use to execute the 100 getObject calls in a loop has its own thread too. This means that the method has 3 separate threads to coordinate between:
The thread that testMutiReadSingleWriteObject is called on (likely the main thread),
The thread that store.queue maintains, and
The thread that queue maintains
These threads run their work in parallel, and this means that an async dispatch call like
queue.async {
store.getObject { ... }
}
will enqueue a work item to run on queue's thread at some point, and keep executing code on the current thread.
This means that by the time you get to running store.object = 1, you are guaranteed to have scheduled 100 work items on queue, but crucially, how and when those work items actually start executing are up to the queue, the CPU scheduler, and other environmental factors. While somewhat rare, this does mean that there's a chance that none of those tasks have gotten to run before the assignment of store.object = 1, which means that by the time they do happen, they'll see a value of 1 stored in the object.
In terms of ordering, you might see a combination of:
100 getObject calls, then store.object = 1
N getObject calls, then store.object = 1, then (100 - N) getObject calls
store.object = 1, then 100 getObject calls
Case (2) can actually prove the behavior you're looking to confirm: all of the calls before store.object = 1 should return nil, and all of the ones after should return 1. If you have a getObject call after the setter that returns nil, you'd know you have a problem. But, this is pretty much impossible to control the timing of.
In terms of how to address the timing issue here: for this method to be meaningful, you'll need to drop one thread to properly coordinate all of your calls to store, so that all accesses to it are on the same thread.
This can be done by either:
Dropping queue, and just accessing store on the thread that the method was called on. This does mean that you cannot call store.getObject asynchronously
Make all calls through queue, whether sync or async. This gives you the opportunity to better control exactly how the store methods are called
Either way, both of these approaches can have different semantics, so it's up to you to decide what you want this method to be testing. Do you want to be guaranteed that all 100 calls will go through before store.object = 1 is reached? If so, you can get rid of queue entirely, because you don't actually want those getters to be called asynchronously. Or, do you want to try to cause the getters and the setter to overlap in some way? Then stick with queue, but it'll be more difficult to ensure you get meaningful results, because you aren't guaranteed to have stable ordering with the concurrent calls.

NSAsynchronousFetchRequest - should update be explicitly done on main thread

I am creating an NSAsynchronousFetchRequest which has a completion block inside it.
I have seen various examples where some include using dispatch queue on the main thread and others don't. For example the Ray Wenderlich core data book doesn't call the result on the main thread.
Should I go back on the main thread when executing the result. Initially I thought I had to but now I don't. Some definitive clarity would be great.
fun exampleFetch(_ completionHandler: #escaping () -> () {
let fetchRequest = NSFetchRequest<NSDictionary>(entityName: "Example")
let asyncFetchRequest = NSAsynchronousFetchRequest<NSDictionary>(fetchRequest: fetchRequest) { result in
// DispatchQueue.main.async { // is this needed
completion()
//}
}
managedContext.performChanges {
do {
try self.managedContext.execute(asyncFetchRequest)
} catch let error {
print("error trying to fetch saving objects:", error.localizedDescription)
}
}
}
You should not explicitly call the completion handler on the main queue. Let the caller decide how to handle it. If anything, document that the completion handler will be called on an arbitrary queue. Then the client calling your exampleFetch method knows that it is their responsibility to be sure that process the result on whatever queue it needs.
This gives the client more control.
This also prevents a lot of needless thread switching. A client may call exampleFetch from a background queue and it may want to process the results in the background. If you explicitly put the completion on the main queue, the client then needs to explicitly switch back to a background queue to process the result. That's two needless queue switches and it's wasted effort on the main queue.

In Xcode 9 / Swift 4 Google APIs Client Library for Objective-C for REST: threading notification not working

In Xcode 9 / Swift 4 using Google APIs Client Library for Objective-C for REST: why does service.executeQuery return thread completion notification before the thread completes?
I have been trying various ways but I am stuck with the following code where the notification is returned before the thread completes. See below the code, the actual output and what I would expect to see (notification comes once the thread has complete).
What am I doing wrong?
Thanks
func myFunctionTest () {
let workItem = DispatchWorkItem {
self.service.executeQuery(query,
delegate: self,
didFinish: #selector(self.displayResultWithTicket2b(ticket:finishedWithObject:error:))
)
}
let group = DispatchGroup()
group.enter()
group.notify(queue: service.callbackQueue) {
print("************************** NOTIFY MAIN THREAD *************************************")
}
service.callbackQueue.async(group: group) {
workItem.perform()
}
group.leave()
}
#objc func displayResultWithTicket2b(ticket : GTLRServiceTicket,
finishedWithObject messagesResponse : GTLRGmail_ListMessagesResponse,
error : NSError?) {
//some code to run here
print("************************** 02.displayResultWithTicket2b ***************************")
}
Output
************************** NOTIFY MAIN THREAD *************************************
************************** 02.displayResultWithTicket2b ***************************
What I would expect = Thread notification comes when thread has completed
************************** 02.displayResultWithTicket2b ***************************
************************** NOTIFY MAIN THREAD *************************************
The problem is that you're dealing with an asynchronous API and you're calling leave when you're done submitting the request. The leave() call has to be inside the completion handler or selector method of your executeQuery call. If you're going to stick with this selector based approach, you're going to have to save the dispatch group in some property and then have displayResultWithTicket2b call leave.
It would be much easier if you used the block/closure completion handler based rendition of the executeQuery API, instead of the selector-based API. Then you could just move the leave into the block/closure completion handler and you'd be done. If you use the block based implementation, not only does it eliminate the need to save the dispatch group in some property, but it probably eliminates the need for the group at all.
Also, the callback queue presumably isn't designed for you to add your own tasks. It's a queue that the library will use the for its callbacks (the queue on which completion blocks and/or delegate methods will be run). Just call executeQuery and the library takes care of running the callbacks on that queue. And no DispatchWorkItem is needed:
session.executeQuery(query) { ticket, object, error in
// do whatever you need here; this runs on the callback queue
DispatchQueue.main.async {
// when you need to update model/UI, do that on the main queue
}
}
The only time I'd use a dispatch group would be if I was performing a series of queries and needed to know when they were all done:
let group = DispatchGroup()
for query in queries {
group.enter()
session.executeQuery(query) { ticket, object, error in
defer { group.leave() }
// do whatever you need here; this runs on the callback queue
}
}
group.notify(queue: .main) {
// do something when done; this runs on the main queue
}

API calls blocks UI thread Swift

I need to sync web database in my coredata, for which I perform service api calls. I am using Alamofire with Swift 3. There are 23 api calls, giving nearly 24k rows in different coredata entities.
My problem: These api calls blocks UI for a minute, which is a long time for a user to wait.
I tried using DispatchQueue and performing the task in background thread, though nothing worked. This is how I tried :
let dataQueue = DispatchQueue.init(label: "com.app.dataSyncQueue")
dataQueue.async {
DataSyncController().performStateSyncAPICall()
DataSyncController().performRegionSyncAPICall()
DataSyncController().performStateRegionSyncAPICall()
DataSyncController().performBuildingRegionSyncAPICall()
PriceSyncController().performBasicPriceSyncAPICall()
PriceSyncController().performHeightCostSyncAPICall()
// Apis which will be used in later screens are called in background
self.performSelector(inBackground: #selector(self.performBackgroundTask), with: nil)
}
An API call from DataSyncController:
func performStateSyncAPICall() -> Void {
DataSyncRequestManager.fetchStatesDataWithCompletionBlock {
success, response, error in
self.apiManager.didStatesApiComplete = true
}
}
DataSyncRequestManager Code:
static func fetchStatesDataWithCompletionBlock(block:#escaping requestCompletionBlock) {
if appDelegate.isNetworkAvailable {
Util.setAPIStatus(key: kStateApiStatus, with: kInProgress)
DataSyncingInterface().performStateSyncingWith(request:DataSyncRequest().createStateSyncingRequest() , withCompletionBlock: block)
} else {
//TODO: show network failure error
}
}
DataSyncingInterface Code:
func performStateSyncingWith(request:Request, withCompletionBlock block:#escaping requestCompletionBlock)
{
self.interfaceBlock = block
let apiurl = NetworkHttpClient.getBaseUrl() + request.urlPath!
Alamofire.request(apiurl, parameters: request.getParams(), encoding: URLEncoding.default).responseJSON { response in
guard response.result.isSuccess else {
block(false, "error", nil )
return
}
guard let responseValue = response.result.value else {
block (false, "error", nil)
return
}
block(true, responseValue, nil)
}
}
I know many similar questions have been already posted on Stackoverflow and mostly it is suggested to use GCD or Operation Queue, though trying DispatchQueues didn't work for me.
Am I doing something wrong?
How can I not block UI and perform the api calls simultaneously?
You can do this to run on a background thread:
DispatchQueue.global(qos: .background).async {
// Do any processing you want.
DispatchQueue.main.async {
// Go back to the main thread to update the UI.
}
}
DispatchQueue manages the execution of work items. Each work item submitted to a queue is processed on a pool of threads managed by the system.
I usually use NSOperationQueue with Alamofire, but the concepts are similar. When you set up an async queue, you allow work to be performed independently of the main (UI) thread, so that your app doesn't freeze (refuse user input). The work will still take however long it takes, but your program doesn't block while waiting to finish.
You really have only put one item into the queue.
You are adding to the queue only once, so all those "perform" calls wait for the previous one to finish. If it is safe to run them concurrently, you need to add each of them to the queue separately. There's more than one way to do this, but the bottom line is each time you call .async {} you are adding one item to the queue.
dataQueue.async {
DataSyncController().performStateSyncAPICall()
}
dataQueue.async {
DataSyncController(). performRegionSyncAPICall l()
}

NSOperationQueue addOperations waitUntilFinished

Hi I am building an app using Swift. I need to process notifications in a specific order. Therefore I am trying to use addOperations waitUntilFinished.
Here is what I did:
let oldify = NSOperation()
oldify.completionBlock = {
println("oldify")
}
let appendify = NSOperation()
appendify.completionBlock = {
println("appendify")
}
let nettoyify = NSOperation()
nettoyify.completionBlock = {
println("nettoyify")
}
NSOperationQueue.mainQueue().maxConcurrentOperationCount = 1
NSOperationQueue.mainQueue().addOperations([oldify, appendify, nettoyify], waitUntilFinished: true)
With this code none of the operations is being executed. When I try this instead:
NSOperationQueue.mainQueue().maxConcurrentOperationCount = 1
NSOperationQueue.mainQueue().addOperation(oldify)
NSOperationQueue.mainQueue().addOperation(appendify)
NSOperationQueue.mainQueue().addOperation(nettoyify)
The operations get executed but not in the right order.
Does anyone know what I'm doing wrong? I am getting confident in swift but completely new to NSOperations
A couple of issues:
You are examining behavior of the completion block handlers. As the completionBlock documentation says:
The exact execution context for your completion block is not guaranteed but is typically a secondary thread. Therefore, you should not use this block to do any work that requires a very specific execution context.
The queue will manage the operations themselves, but not their completion blocks (short of making sure that the the operation finishes before its completionBlock is started). So, bottom line, do not make any assumptions about (a) when completion blocks are run, (b) the relation of one operation's completionBlock to other operations or their completionBlock blocks, etc., nor (c) which thread they are performed on.
Operations are generally executed in the order in which they were added to the queue. If you add an array of operations, though, the documentation makes no formal assurances that they are enqueued in the order they appear in that array. You might, therefore, want to add the operations one at a time.
Having said that, the documentation goes on to warn us:
An operation queue executes its queued operation objects based on their priority and readiness. If all of the queued operation objects have the same priority and are ready to execute when they are put in the queue—that is, their isReady method returns YES—they are executed in the order in which they were submitted to the queue. However, you should never rely on queue semantics to ensure a specific execution order of operation objects. Changes in the readiness of an operation can change the resulting execution order. If you need operations to execute in a specific order, use operation-level dependencies as defined by the NSOperation class.
To establish explicit dependencies, you might do something like:
let oldify = NSBlockOperation() {
NSLog("oldify")
}
oldify.completionBlock = {
NSLog("oldify completion")
}
let appendify = NSBlockOperation() {
NSLog("appendify")
}
appendify.completionBlock = {
NSLog("appendify completion")
}
appendify.addDependency(oldify)
let nettoyify = NSBlockOperation() {
NSLog("nettoyify")
}
nettoyify.completionBlock = {
NSLog("nettoyify completion")
}
nettoyify.addDependency(appendify)
let queue = NSOperationQueue()
queue.addOperations([oldify, appendify, nettoyify], waitUntilFinished: false)
BTW, as you'll see above, you should not add operations to the main queue in conjunction with the waitUntilFinished. Feel free to add them to a different queue, but don't dispatch from a serial queue, back to itself, with the waitUntilFinished option.

Resources