I wrote a C++ program in Visual Studio for anomaly detection using OpenCV. I'm now able to capture images with Basler Ace camera and process the captured image in visual studio. Camera is connected to computer directly with USB 3.0.
My next step is to synchronize image capturing and processing with robot movement. I have IRB1440 ABB robot.
What are the possible solutions for this? Should I buy expensive Siemens PLCs ? Can the solution be found in any other way? What type of communication should I use?
This is a very specific question on a commercial product. I suggest you contact ABBs support and read the robot controllers manual. There you will find information on how to interface it in a safe manner.
It is not the robot you want to talk to, it is its controller!
According to the info I found on IRB 1440 (seem to be a sub-model of IRB1400) the controller is a S4Cplus.
The way we usually do it is a Windows PC based image processing system that is hooked up to a PLC (Siemens, Mitsubishi,...) which forwards our coordinates, angles and whatnot to the robot controller.
Of course the PLC can be omitted if your PC is the "boss" of the entire system.
S4Cplus Product Specifications
This controller comes with various interfacing options including RS232, RS422, Ethernet as well as a whole bunch of industry standards.
Having a separate PLC is not necessary as the controller may serve as a PLC itself, although you might have to upgrade the controller using so called I/O nodes.
But as I said, refer to the manuals and ABB support.
Obviously any non-realtime solution like a Windows PC is not an option for any safety features.
Related
Background
I'm very new to electronics/IoT dev. I'm trying to create a solution to be able to read my wife's Car's CAN Bus signal (messages) and store it to an SD card. I hope to analyze the data and build a dashboard based on the car's telemetry.
This specific question is in relation to a chip (STM32F1) on an IoT board (MXChip AZ3166) I already own, which I hope to incorporate into my overall solution as the data acquisition layer.
For reference the:
Chips is the: STMicroelectronics STM32F103C8T6, 32bit ARM Cortex M3 Microcontroller
and the IoT board is the: (MXChip AZ3166 IoT DevKit)
Reading the MXChip AZ3166 board's spec and after doing some research, I have found out that the MXChip AZ3166 comprises two main chipsets:
Vendor
Part Number
Ref Link
STMicroelectronics
STM32F103C8T6
https://uk.rs-online.com/web/p/microcontrollers/1023545
MXChip
EMW3166
https://www.mxchip.com/en/products/module/54
Main Question
The product specification mentions the STM32F1 features Comprising of motor control peripherals plus CAN and USB full speed interfaces, it also states it has 1x CAN Channel. Does that mean I can interface the MXChip AZ3166 board featuring this chip via the GPIO pins to the CAB bus in my wife's car and receive the CAN Bus signals (I presume adhering to the
ISO 11898-1 CAN data communication protocol).
How would I find out which pins to connect to the CAN Hi & CAN low connections on the cars CAN Bus?
Concerning power, how would I determine that the CAN signal received doesn't fry the MXChip Board with a stated max Operation voltage of 3.3v?
Yes you'll want an MCU with a built-in CAN controller for communicating on a CAN bus. However, the CAN standard only covers the physical and data link layers. You need to know the application layer in order to meaningfully interact with a bus.
The application layer on a car may or may not be proprietary. It may even be encrypted. If you don't know what protocol is uses, then no can do. Reverse-engineering CAN protocols is hackish, hard and dangerous. Plugging into a CAN bus where you have no clue about timing considerations etc is also very dangerous.
But cars usually have an "on-board diagnostics" (OBD) port used for service purposes, with standardized application layers, through which you may have access to various parts of the car. There's lots of different standards for OBD and older ones didn't even use CAN. It depends on the car model.
In case of the OBD port the pinouts are standardized and you can find them on the Internet. Otherwise it is very simple to find out which signal that's CANH and CANL with an oscilloscope. CANH goes 2.5V +1V and CANL 2.5V -1V. A more hacky solution is to measure this with a multimeter, but it's perfectly possible since one signal with be slightly above 2.5V and the other slightly below.
CAN is standardized so if you have a CAN bus on the board, you connect there. In some cases there may be 12V supply wired together with the signal and that's the only one which could fry something.
Overall, please note that the project you describe here is very difficult and not a beginner task. It sounds as you have next to no experience of electronics/embedded systems, so I would recommend picking a far simpler project.
Furthermore, modifying car electronics or installing your own electronics in a car is illegal in most parts of the world. Third party type approvals with EMC tests are mandatory (and very expensive). If your car is involved in an accident and they find custom electronics without type approval in it, you could be facing serious legal consequences.
I am quite new to Labview. Does anyone know how to get images from 2 usb cameras simultaneously. There are some topics about it in the internet, but all of them are a little bit misleading and do not present the whole solution.
use labview 2014 and higher also check if your cpu and RAM of your system could support two or more simountensous camera .you can check this by open two camera in same time but with different software after that you find out that you system could handle two camera
use Imaqdx for open camera but it is better to use flat sequence for config and open part
it is better open camera by one by but you can capture in same time inside while loop
if you system could not handle two camera told me I could suggest a method to solve it
This isn't something supported using basic LabVIEW funtions.
However, you can use hooks into the User32.dll to create windows and populate them with live images from USB webcams.
I've had the example posted here working on LabVIEW 2016 + 2018
The linked example is displaying 2 webcams and doesn't need IMAQ drivers to run
My and my fellow students are deciding on a choosing a simple microcontroller to do very basic image processing. We are basically trying to implement template matching to find a set of objects in specific portions of the image. We'd like to use a connect a webcam to the microcontroller to do the job take the pictures and look for the objects. We also require basic wireless communication (e.g. bluetooth or wifi).
I don't think we will have the luxury of using state-of-the-art microcontroller, but something thats been around for a while (due to budget and stuff). Could anyone please advise on which specs of the microcontrolelr would be the most relevant for the above task (e.g. CPU, MIPS, etc).
Thanks a lot!
For this kind of a task, I would say the amount of RAM is the most relevant spec.
A microcontroller with an external memory interface allows you to extend the data space with additional SRAM to hold your image data.
Also note, that memory is needed for any protocol stacks you need to implement (Bluetooth, TCP/IP even more so).
You probably want to have total RAM in tens of kilobytes, preferably 100+ kB.
It is also nice to have plenty of program memory available when learning and experimenting. Later on you can try to optimize and squeeze your code into a more confined device.
As for the architecture, choose something you can easily find development tools and examples for.ARM, AVR and PIC are all good candidates among others.
Also find out what interfaces you need to use to
control the camera (e.g. I2C or SPI)
read pixel data (e.g. parallel or analog)
Connecting directly to a webcam's USB interface would not be a straightforward task, as the microcontroller would need to act as a USB host.
Good luck with your project!
You may need a microcontroller with following features:
USB 2.0 Host controller
1.2MB of memory for buffer 640*480*2(bytes per pixel)*2(double buffer)
(you may use lower resolution if there are not enough memory)
Wifi controller
CPU power strong enough for your task
Ready open source code
It seems that broadcom controllers may be useful here.
Also, you can by off-the-shell Wifi router with usb port and use it for your project
(i.e. Linksys E3000 )
I'm writing LabVIEW software that grabs images from an IMAQ compatible GigE camera.
The problem: This is a collaborative project, so I only have intermittent access to the actual camera.I'd like to be able to keep developing this software even when the camera isn't present.
Is there a simple/fast way to create a virtual or dummy IMAQ camera in software? Ideally I'd like the dummy camera grab frames from an AVI or a stack of JPEG's. Something like this must exist, I just can't find it on Google.
I'm looking for something that won't take very long (e.g.< 2 hours effort) and that is abstracted away through the standard LabVIEW IMAQ interface, so that my software won't know or care whether its dealing with a dummy camera or an actual camera.
You can try this method using LabVIEW classes:
Hardware Emulation Using LabVIEW Classes
If you have the IMAQdx driver, you might consider just buying a cheap USB webcam for $10.
Use the IMAQdx driver (assuming you have it), and then insert the Vision Acquisition Express VI, and you can choose AVIs or even pics as a source.
Something like this: GigESim is a camera emulation software. Unfortunately it is proprietary and too expensive (>$500) for my own needs, but perhaps others will find this link useful.
Anyone know of a viable Open Source alternative?
There's an IP Camera emulator project that emulates IP camera with python. I haven't used it myself so i don't know if it can be used by IMAQ.
Let us know if it's good for you.
I know this question is really old, but hopefully this answer helps someone out.
IMAQdx also works with Windows DirectShow devices. While normally these are actual physical capture devices (think USB Webcams), there is no necessity that they have to be.
There are a few different pre-made options available on the web. I found using Open Broadcaster Studio and this Virtual Cam plugin to be easy enough. Basically:
Download and install both.
Load your media sources in the sources list.
Enable the VirtualCam stream (Tools > VirtualCam). Press Start.
We have a range of PC demonstration programs for our microcontroller products. The programs typically connect to a USB HID chip on the microcontroller board. The USB chip acts as a communications bridge, allowing the programs to communicate with the micros over SPI/I2C/UART. The programs can configure the micros, and get back status information to display to the user.
We are now looking to build some standalone demonstrations using single board PCs. We would like to reuse as much as possible of our existing demo app source code. Ideally, we could just run them as-is.
Does anybody have any advice on the best way forward? The basic options seem to be WinCE or XP Embedded boards. WinCE boards seem to pull less power, which would be an advantage from a battery life point of view.
Our existing demos are built either in C++ under Borland Builder, or in Delphi.
Thanks in advance.
EDIT: see my answer below with info from a board vendor.
Free Pascal/Lazarus can compile some forms of Delphi apps to WiNCE/arm. Even visual ones.
There isn't a Delphi version for WinCE, so you would need to rewrite the applications. The same applies for the Borland Builder's control libraries. Only if you have used plain Win32 API, you would be able to port your application to WinCE easily. You may also encounter problems with the hardware access part. The Serial Port driver may not work as is. Also, you need to find a WinCE board that can act as USB host and provides HID drivers (this isn't very common).
In conclusion, I believe that you would be better of with Windows XP Embedded boards. These should run your applications as they are.
As an update, and for future reference, I thought I'd post the results of our discussions with a WinCE board vendor here. Caveat: I haven't actually tried any of this.
The bottom line is that there isn't a straightforward way to do what we were hoping for (i.e., re-compile our existing demo applications to run under WinCE). The reason is that the generic HID drivers and standard APIs that exist in desktop flavours of Windows just aren't there in WinCE.
To talk to HID devices in WinCE you need to implement a custom HID driver. This needs to support an interface allowing user mode applications to communicate with the driver, and to construct HID reports to be sent to the physical device. As this interface would itself be custom, application code needs to be updated accordingly.
WinCE application development is generally done using Visual Studio and the Microsoft compilers. The approach recommended to us was:
Create a custom HID class driver. This could be based on, for instance, the Microsoft keyboard HID driver.
Create an API for talking to the driver.
Use .net to create our GUI applications, and use PInvoke to actually talk to the API.
The end result of all this head-scratching is that to avoid the time and learning curve associated with this approach, we're going to go for a board running XP. We can then use our existing demo applications straight out of box. The trade-off is that we'll have to live with substantially reduced battery life.