My semi-supervised linear discriminant analysis does not work at all - machine-learning

I am working on LDA (linear discriminant analysis), and you can refer to http://www.ccs.neu.edu/home/vip/teach/MLcourse/5_features_dimensions/lecture_notes/LDA/LDA.pdf .
My idea about semi-supervised LDA: I can use labeled data $X\in R^{d\times N}$ to computer all terms in $S_w$ and $S_b$. Now, I also have unlabeled data $Y\in R^{d\times M}$, and such data can be additionally used to estimate the covariance matrix $XX^T$ in $S_w$ by $\frac{N}{N+M}(XX^T+YY^T)$ which intuitively gets a better covariance estimation.
Implementation of different LDA: I also add a scaled identity matrix to $S_w$ for all compared methods, the scaling parameter should be tuned in different methods. I divide training data into two parts: labeled $X\in R^{d\times N}$, unlabeled $Y\in R^{d\times M}$ with $N/M$ ranging from $0.5$ to $0.05$. I run my semi-supervised LDA on three kinds of real datasets.
How to do classification: The eigenvectors of $S_w^{-1}S_b$ are used as the transformation matrix $\Phi$, then
Experiment results: 1) In the testing data, the classification accuracy of my semi-supervised LDA trained on data $X$& $Y$ is always a bit worse than the standard LDA trained only on data $X$. 2) Also, in one real data, the optimal scaling parameter can be very different for these two methods to achieve a best classification accuracy.
Could you tell me the reason and give me suggestion to make my semi-supervised LDA work? My codes have been checked. Many thanks.

Related

Use categorical data as feature/target without encoding it

I am recently found a model to classify the Irish flower based on the size of its leaf. There are 3 types of flowers as a target (dependent variable). As I know, the categorical data should be encoded so that it can be used in machine learning. However, in the model the data is used directly without encoding process.
Can anyone help to explain when to use encoding? Thank you in advance!
Relevant question - encoding of continuous feature variables.
Originally, the Iris data were published by Fisher when he published his linear discriminant classifier.
Generally, a distinction is made between:
Real-value classifiers
Discrete feature classifiers
Linear discriminant analysis and quadratic discriminant analysis are real-value classifiers. Trying to add discrete variables as extra input does not work. Special procedures for working with indicator variables (the name used in statistics) in discriminant analysis have been developed. Also the k-nearest neighbour classifier really only works well with real-valued feature variables.
The naive Bayes classifier is most commonly used for classification problems with discrete features. When you don't want to assume conditional independence between the feature variables, the multinomial classifier can be applied to discrete features. A classifier service that does all this for you in one go, is insight classifiers.
Neural networks and support vector machines combine real-valued and discrete features. My advice is to use one separate input node for each discrete outcome - don't use one single input node provided with values like: (0: small, 1: minor, 2: medium, 3: larger, 4: big). One input-node-per-outcome-encoding will improve your training result and yield better test set performance.
The random forest classifier also combines real-valued and discrete features seamlessly.
Final advice is to train and test-set compare at least 4 different types of classifiers, as there is no such thing as the universal best type of classifier.

LDA and PCA on a dataset containing two classes

I would like to compare the accuracies of running logistic regression on a dataset following PCA and LDA. The dataset I am using is the wisconsin cancer dataset, which contains two classes: malignant or benign tumors and 30 features. I have already conducted PCA on this data and have been able to get good accuracy scores with 10 PCAs. I know that LDA is similar to PCA. My understanding is that you calculate the mean vectors of each feature for each class, compute scatter matricies and then get the eigenvalues for the dataset. Is LDA similar to PCA in the sense that I can choose 10 LDA eigenvalues to better separate my data? I have tried LDA with scikit learn, however it has only given me one LDA back. Is this becasue I only have 2 classes, or do I need to do an addiontional step? I would like to have 10 LDAs in order to compare it with my 10 PCAs. Is this even possible?
Actually both LDA and PCA are linear transformation techniques: LDA is a supervised whereas PCA is unsupervised (ignores class labels). You can picture PCA as a technique that finds the directions of maximal variance.And LDA as a technique that also cares about class separability (note that here, LD 2 would be a very bad linear discriminant).Remember that LDA makes assumptions about normally distributed classes and equal class covariances (at least the multiclass version; the generalized version by Rao).

Train multi-class classifier for binary classification

If a dataset contains multi categories, e.g. 0-class, 1-class and 2-class. Now the goal is to divide new samples into 0-class or non-0-class.
One can
combine 1,2-class into a unified non-0-class and train a binary classifier,
or train a multi-class classifier to do binary classification.
How is the performance of these two approaches?
I think more categories will bring about a more accurate discriminant surface, however the weights of 1- and 2- classes are both lower than non-0-class, resulting in less samples be judged as non-0-class.
Short answer: You would have to try both and see.
Why?: It would really depend on your data and the algorithm you use (just like for many other machine learning questions..)
For many classification algorithms (e.g. SVM, Logistic Regression), even if you want to do a multi-class classification, you would have to perform a one-vs-all classification, which means you would have to treat class 1 and class 2 as the same class. Therefore, there is no point running a multi-class scenario if you just need to separate out the 0.
For algorithms such as Neural Networks, where having multiple output classes is more natural, I think training a multi-class classifier might be more beneficial if your classes 0, 1 and 2 are very distinct. However, this means you would have to choose a more complex algorithm to fit all three. But the fit would possibly be nicer. Therefore, as already mentioned, you would really have to try both approaches and use a good metric to evaluate the performance (e.g. confusion matrices, F-score, etc..)
I hope this is somewhat helpful.

Suggested unsupervised feature selection / extraction method for 2 class classification?

I've got a set of F features e.g. Lab color space, entropy. By concatenating all features together, I obtain a feature vector of dimension d (between 12 and 50, depending on which features selected.
I usually get between 1000 and 5000 new samples, denoted x. A Gaussian Mixture Model is then trained with the vectors, but I don't know which class the features are from. What I know though, is that there are only 2 classes. Based on the GMM prediction I get a probability of that feature vector belonging to class 1 or 2.
My question now is: How do I obtain the best subset of features, for instance only entropy and normalized rgb, that will give me the best classification accuracy? I guess this is achieved, if the class separability is increased, due to the feature subset selection.
Maybe I can utilize Fisher's linear discriminant analysis? Since I already have the mean and covariance matrices obtained from the GMM. But wouldn't I have to calculate the score for each combination of features then?
Would be nice to get some help if this is a unrewarding approach and I'm on the wrong track and/or any other suggestions?
One way of finding "informative" features is to use the features that will maximise the log likelihood. You could do this with cross validation.
https://www.cs.cmu.edu/~kdeng/thesis/feature.pdf
Another idea might be to use another unsupervised algorithm that automatically selects features such as an clustering forest
http://research.microsoft.com/pubs/155552/decisionForests_MSR_TR_2011_114.pdf
In that case the clustering algorithm will automatically split the data based on information gain.
Fisher LDA will not select features but project your original data into a lower dimensional subspace. If you are looking into the subspace method
another interesting approach might be spectral clustering, which also happens
in a subspace or unsupervised neural networks such as auto encoder.

What's the difference between ANN, SVM and KNN classifiers?

I am doing remote sensing image classification. I am using the object-oriented method: first I segmented the image to different regions, then I extract the features from regions such as color, shape and texture. The number of all features in a region may be 30 and commonly there are 2000 regions in all, and I will choose 5 classes with 15 samples for every class.
In summary:
Sample data 1530
Test data 197530
How do I choose the proper classifier? If there are 3 classifiers (ANN, SVM, and KNN), which should I choose for better classification?
KNN is the most basic machine learning algorithm to paramtise and implement, but as alluded to by #etov, would likely be outperformed by SVM due to the small training data sizes. ANNs have been observed to be limited by insufficient training data also. However, KNN makes the least number of assumptions regarding your data, other than that accurate training data should form relatively discrete clusters. ANN and SVM are notoriously difficult to paramtise, especially if you wish to repeat the process using multiple datasets and rely upon certain assumptions, such as that your data is linearly separable (SVM).
I would also recommend the Random Forests algorithm as this is easy to implement and is relatively insensitive to training data size, but I would advise against using very small training data sizes.
The scikit-learn module contains these algorithms and is able to cope with large training data sizes, so you could increase the number of training data samples. the best way to know for sure would be to investigate them yourself, as suggested by #etov
If your "sample data" is the train set, it seems very small. I'd first suggest using more than 15 examples per class.
As said in the comments, it's best to match the algorithm to the problem, so you can simply test to see which algorithm works better. But to start with, I'd suggest SVM: it works better than KNN with small train sets, and generally easier to train then ANN, as there are less choices to make.
Have a look at below mind map
KNN: KNN performs well when sample size < 100K records, for non textual data. If accuracy is not high, immediately move to SVC ( Support Vector Classifier of SVM)
SVM: When sample size > 100K records, go for SVM with SGDClassifier.
ANN: ANN has evolved overtime and they are powerful. You can use both ANN and SVM in combination to classify images
More details are available #semanticscholar.org

Resources