erlang, ejabberd, how to deal with [{text, <<>>, <<"hello">>}] formats - erlang

So I got a hook in my code that says if an offline message is received, it will start up this function.
offline_msg_received(From, To, Packet) ->
The Packet has code looking like this:
{message,<<"purple2d957668">>,chat,<<>>,undefined,{jid,<<"admin">>,<<"localhost">>,<<"5280">>,<<"admin">>,<<"localhost">>,<<"5280">>},[],[{text,<<>>,<<"Hello">>}],undefined,[{xmlel,<<"active">>,[{<<"xmlns">>,<<"http://jabber.org/protocol/chatstates">>}],[]}],#{}}
What I wanted out of this is the part containing my message. Which is:
[{text,<<>>,<<"Hello">>}]
I could get this part out with a pattern matching against the whole package variable. However, when I tried a pattern matching with my message, it says bad argument. I know that if I specify a variable with just
{text,<<>>,<<"Hello">>}
then I can pattern match against that. From my understanding, seeing [ ] around something means it is a list, or a string.
I can show some of the code here.
{P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11} = Packet, %% P8 is the message I want.
?INFO_MSG("----------------------P8: ~p~n", P8), %% This shows {text,<<>>,<<"Hello">>}
{A, B, C} = P8, %% This gives me a badmatch error.
Now, if I were to instead do this manually in the code shell:
{text,<<>>,<<"Hello">>} = P8,
{A, B, C} = P8,
Then the code works, and puts <<"Hello">> in the C variable.
My guess is that the [ ] around it in the "Package" variable has something to do with my badmatch error, but for some reason those symbols don't appear when I print out P8. Does anyone have a good suggestion why it doesn't work? I am guessing it has something to do with the hidden [ ], since otherwise it looks identical to my shell code test.
Thanks. This is my first time asking questions here, so I hope I didn't do anything wrong.

The reason you're not seeing the square brackets around the value in your INFO_MSG call is that INFO_MSG expects a list of values, not just a single value. In the code above it happens to work out, since the format string only contains a single directive, and the value is a list of one element, so that's why the brackets are silently stripped out.
The INFO_MSG macro works the same as io:format, so you could try this out in the shell:
%% two arguments
io:format("~p ~p\n", [foo, bar]).
%% one argument - we still need square brackets
io:format("~p\n", [foo]).
You're doing this the hard way :) message and text are records defined in xmpp_codec.hrl. If you don't have the record definitions loaded in the shell, records look like a tuple with lots of elements, but if you load the record definitions, your message looks like this instead:
1> rr("include/xmpp_codec.hrl").
[address,addresses,adhoc_actions,adhoc_command,adhoc_note,
bind,block,block_list,bob_data,bookmark_conference,
bookmark_storage,bookmark_url,bytestreams,caps,
carbons_disable,carbons_enable,carbons_private,
carbons_received,carbons_sent,chatstate,client_id,compress,
compress_failure,compressed,compression,csi,db_feature,
db_result,db_verify|...]
2> {message,<<"purple2d957668">>,chat,<<>>,undefined,{jid,<<"admin">>,<<"localhost">>,<<"5280">>,<<"admin">>,<<"localhost">>,<<"5280">>},[],[{text,<<>>,<<"Hello">>}],undefined,[{xmlel,<<"active">>,[{<<"xmlns">>,<<"http://jabber.org/protocol/chatstates">>}],[]}],#{}}.
#message{id = <<"purple2d957668">>,type = chat,lang = <<>>,
from = undefined,
to = {jid,<<"admin">>,<<"localhost">>,<<"5280">>,
<<"admin">>,<<"localhost">>,<<"5280">>},
subject = [],
body = [#text{lang = <<>>,data = <<"Hello">>}],
thread = undefined,
sub_els = [{xmlel,<<"active">>,
[{<<"xmlns">>,
<<"http://jabber.org/protocol/chatstates">>}],
[]}],
meta = #{}}
The data you are looking for is in the body field.
Let's assign this record to the variable M and extract the body field:
4> Body = M#message.body.
[#text{lang = <<>>,data = <<"Hello">>}]
So that's a list containing one text record. Let's extract the data field from that:
6> [#text{data = Data}] = Body.
[#text{lang = <<>>,data = <<"Hello">>}]
7> Data.
<<"Hello">>
That's how it works in the shell - load the record definitions with the rr function. When writing a module that uses record definitions, you'd need to include the hrl file:
-include_lib("xmpp/include/xmpp_codec.hrl").
The -include_lib directory will look for the xmpp application on the load path, and search for the file xmpp_codec.hrl inside its include directory. You may need to specify the code path to the compiler, something like erlc -pa path/to/xmpp/ebin my_module.erl - note that the ebin directory inside the application should be on the code path.

Related

What does (_,[]) mean?

I was given a question which was:
given a number N in the first argument selects only numbers greater than N in the list, so that
greater(2,[2,13,1,4,13]) = [13,4,13]
This was the solution provided:
member(_,[]) -> false;
member(H,[H|_]) -> true;
member(N,[_,T]) -> member(N,T).
I don't understand what "_" means. I understand it has something to do with pattern matching but I don't understand it completely. Could someone please explain this to me
This was the solution provided:
I think you are confused: the name of the solution function isn't even the same as the name of the function in the question. The member/2 function returns true when the first argument is an element of the list provided as the second argument, and it returns false otherwise.
I don't understand what "_" means. I understand it has something to do with pattern matching but I don't understand it completely. Could someone please explain this to me
_ is a variable name, and like any variable it will match anything. Here are some examples of pattern matching:
35> f(). %"Forget" or erase all variable bindings
ok
45> {X, Y} = {10, 20}.
{10,20}
46> X.
10
47> Y.
20
48> {X, Y} = {30, 20}.
** exception error: no match of right hand side value {30,
20}
Now why didn't line 48 match? X was already bound to 10 and Y to 20, so erlang replaces those variables with their values, which gives you:
48> {10, 20} = {30, 20}.
...and those tuples don't match.
Now lets try it with a variable named _:
49> f().
ok
50> {_, Y} = {10, 20}.
{10,20}
51> Y.
20
52> {_, Y} = {30, 20}.
{30,20}
53>
As you can see, the variable _ sort of works like the variable X, but notice that there is no error on line 52, like there was on line 48. That's because the _ variable works a little differently than X:
53> _.
* 1: variable '_' is unbound
In other words, _ is a variable name, so it will initially match anything, but unlike X, the variable _ is never bound/assigned a value, so you can use it over and over again without error to match anything.
The _ variable is also known as a don't care variable because you don't care what that variable matches because it's not important to your code, and you don't need to use its value.
Let's apply those lessons to your solution. This line:
member(N,[_,T]) -> member(N,T).
recursively calls the member function, namely member(N, T). And, the following function clause:
member(_,[]) -> false;
will match the function call member(N, T) whenever T is an empty list--no matter what the value of N is. In other words, once the given number N has not matched any element in the list, i.e. when the list is empty so there are no more elements to check, then the function clause:
member(_,[]) -> false;
will match and return false.
You could rewrite that function clause like this:
member(N, []) -> false;
but erlang will warn you that N is an unused variable in the body of the function, which is a way of saying: "Are you sure you didn't make a mistake in your function definition? You defined a variable named N, but then you didn't use it in the body of the function!" The way you tell erlang that the function definition is indeed correct is to change the variable name N to _ (or _N).
It means a variable you don't care to name. If you are never going to use a variable inside the function you can just use underscore.
% if the list is empty, it has no members
member(_, []) -> false.
% if the element I am searching for is the head of the list, it is a member
member(H,[H|_]) -> true.
% if the elem I am searching for is not the head of the list, and the list
% is not empty, lets recursively go look at the tail of the list to see if
% it is present there
member(H,[_|T]) -> member(H,T).
the above is pseudo code for what is happening. You can also have multiple '_' unnamed variables.
According to Documentation:
The anonymous variable is denoted by underscore (_) and can be used when a variable is required but its value can be ignored.
Example:
[H, _] = [1,2] % H will be 1
Also documentation says that:
Variables starting with underscore (_), for example, _Height, are normal variables, not anonymous. They are however ignored by the compiler in the sense that they do not generate any warnings for unused variables.
Sorry if this is repetitive...
What does (_,[]) mean?
That means (1) two parameters, (2) the first one matches anything and everything, yet I don't care about it (you're telling Erlang to just forget about its value via the underscore) and (3) the second parameter is an empty list.
Given that Erlang binds or matches values with variables (depending on the particular case), here you're basically looking to a match (like a conditional statement) of the second parameter with an empty list. If that match happens, the statement returns false. Otherwise, it tries to match the two parameters of the function call with one of the other two statements below it.

Erlang: variable is unbound

Why is the following saying variable unbound?
9> {<<A:Length/binary, Rest/binary>>, Length} = {<<1,2,3,4,5>>, 3}.
* 1: variable 'Length' is unbound
It's pretty clear that Length should be 3.
I am trying to have a function with similar pattern matching, ie.:
parse(<<Body:Length/binary, Rest/binary>>, Length) ->
But if fails with the same reason. How can I achieve the pattern matching I want?
What I am really trying to achieve is parse in incoming tcp stream packets as LTV(Length, Type, Value).
At some point after I parse the the Length and the Type, I want to ready only up to Length number of bytes as the value, as the rest will probably be for the next LTV.
So my parse_value function is like this:
parse_value(Value0, Left, Callback = {Module, Function},
{length, Length, type, Type, value, Value1}) when byte_size(Value0) >= Left ->
<<Value2:Left/binary, Rest/binary>> = Value0,
Module:Function({length, Length, type, Type, value, lists:reverse([Value2 | Value1])}),
if
Rest =:= <<>> ->
{?MODULE, parse, {}};
true ->
parse(Rest, Callback, {})
end;
parse_value(Value0, Left, _, {length, Length, type, Type, value, Value1}) ->
{?MODULE, parse_value, Left - byte_size(Value0), {length, Length, type, Type, value, [Value0 | Value1]}}.
If I could do the pattern matching, I could break it up to something more pleasant to the eye.
The rules for pattern matching are that if a variable X occurs in two subpatterns, as in {X, X}, or {X, [X]}, or similar, then they have to have the same value in both positions, but the matching of each subpattern is still done in the same input environment - bindings from one side do not carry over to the other. The equality check is conceptually done afterwards, as if you had matched on {X, X2} and added a guard X =:= X2. This means that your Length field in the tuple cannot be used as input to the binary pattern, not even if you make it the leftmost element.
However, within a binary pattern, variables bound in a field can be used in other fields following it, left-to-right. Therefore, the following works (using a leading 32-bit size field in the binary):
1> <<Length:32, A:Length/binary, Rest/binary>> = <<0,0,0,3,1,2,3,4,5>>.
<<0,0,0,3,1,2,3,4,5>>
2> A.
<<1,2,3>>
3> Rest.
<<4,5>>
I've run into this before. There is some weirdness between what is happening inside binary syntax and what happens during unification (matching). I suspect that it is just that binary syntax and matching occur at different times in the VM somewhere (we don't know which Length is failing to get assigned -- maybe binary matching is always first in evaluation, so Length is still meaningless). I was once going to dig in and find out, but then I realized that I never really needed to solve this problem -- which might be why it was never "solved".
Fortunately, this won't stop you with whatever you are doing.
Unfortunately, we can't really help further unless you explain the context in which you think this kind of a match is a good idea (you are having an X-Y problem).
In binary parsing you can always force the situation to be one of the following:
Have a fixed-sized header at the beginning of the binary message that tells you the next size element you need (and from there that can continue as a chain of associations endlessly)
Inspect the binary once on entry to determine the size you are looking for, pull that one value, and then begin the real parsing task
Have a set of fields, all of predetermined sizes that conform to some a binary schema standard
Convert the binary to a list and iterate through it with any arbitrary amount of look-ahead and backtracking you might need
Quick Solution
Without knowing anything else about your general problem, a typical solution would look like:
parse(Length, Bin) ->
<<Body:Length/binary, Rest/binary>> = Bin,
ok = do_something(Body),
do_other_stuff(Rest).
But I smell something funky here.
Having things like this in your code is almost always a sign that a more fundamental aspect of the code structure is not in agreement with the data that you are handling.
But deadlines.
Erlang is all about practical code that satisfies your goals in the real world. With that in mind, I suggest that you do something like the above for now, and then return to this problem domain and rethink it. Then refactor it. This will gain you three benefits:
Something will work right away.
You will later learn something fundamental about parsing in general.
Your code will almost certainly run faster if it fits your data better.
Example
Here is an example in the shell:
1> Parse =
1> fun
1> (Length, Bin) when Length =< byte_size(Bin) ->
1> <<Body:Length/binary, Rest/binary>> = Bin,
1> ok = io:format("Chopped off ~p bytes: ~p~n", [Length, Body]),
1> Rest;
1> (Length, Bin) ->
1> ok = io:format("Binary shorter than ~p~n", [Length]),
1> Bin
1> end.
#Fun<erl_eval.12.87737649>
2> Parse(3, <<1,2,3,4,5>>).
Chopped off 3 bytes: <<1,2,3>>
<<4,5>>
3> Parse(8, <<1,2,3,4,5>>).
Binary shorter than 8
<<1,2,3,4,5>>
Note that this version is a little safer, in that we avoid a crash in the case that Length is longer than the binary. This is yet another good reason why maybe we can't do that match in the function head.
Try with below code:
{<<A:Length/binary, Rest/binary>>, _} = {_, Length} = {<<1,2,3,4,5>>, 3}.
This question is mentioned a bit in EEP-52:
Any variables used in the expression must have been previously bound, or become bound in the same binary pattern as the expression. That is, the following example is illegal:
illegal_example2(N, <<X:N,T/binary>>) ->
{X,T}.
And explained a bit more in the following e-mail: http://erlang.org/pipermail/eeps/2020-January/000636.html
Illegal. With one exception, matching is not done in a left-to-right
order, but all variables in the pattern will be bound at the same
time. That means that the variables must be bound before the match
starts. For maps, that means that the variables referenced in key
expressions must be bound before the case (or receive) that matches
the map. In a function head, all map keys must be literals.
The exception to this general rule is that within a binary pattern,
the segments are matched from left to right, and a variable bound in a
previous segment can be used in the size expression for a segment
later in the binary pattern.
Also one of the members of OTP team mentioned that they made a prototype that can do that, but it was never finished http://erlang.org/pipermail/erlang-questions/2020-May/099538.html
We actually tried to make your example legal. The transformation of
the code that we did was not to rewrite to guards, but to match
arguments or parts of argument in the right order so that variables
that input variables would be bound before being used. (We would do a
topological sort to find the correct order.) For your example, the
transformation would look similar to this:
legal_example(Key, Map) ->
case Map of
#{Key := Value} -> Value;
_ -> error(function_clause, [Key, Map])
end.
In the prototype implementation, the compiler could compile the
following example:
convoluted(Ref,
#{ node(Ref) := NodeId, Loop := universal_answer},
[{NodeId, Size} | T],
<<Int:(Size*8+length(T)),Loop>>) when is_reference(Ref) ->
Int.
Things started to fall apart when variables are repeated. Repeated
variables in patterns already have a meaning in Erlang (they should be
the same), so it become tricky to understand to distinguish between
variables being bound or variables being used a binary size or map
key. Here is an example that the prototype couldn't handle:
foo(#{K := K}, K) -> ok.
A human can see that it should be transformed similar to this:
foo(Map, K) -> case Map of
{K := V} when K =:= V -> ok end.
Here are few other examples that should work but the prototype would
refuse to compile (often emitting an incomprehensible error message):
bin2(<<Sz:8,X:Sz>>, <<Y:Sz>>) -> {X,Y}.
repeated_vars(#{K := #{K := K}}, K) -> K.
match_map_bs(#{K1 := {bin,<<Int:Sz>>}, K2 := <<Sz:8>>}, {K1,K2}) ->
Int.
Another problem was when example was correctly rejected, the error
message would be confusing.
Because much more work would clearly be needed, we have shelved the
idea for now. Personally, I am not sure that the idea is sound in the
first place. But I am sure of one thing: the implementation would be
very complicated.
UPD: latest news from 2020-05-14

erlang : placeholder in tuple (or list)

I'd like to tidy my Eralng code, I found there're lots of issue following:
A = {Tid, _Tv0, _Tv1, Tv2, Tv3}
Is there any way to clean the code like to be: A = {Tid, SomewayReplace(4)} ???
Update1:
like #Pascal example, Is there any way to simple the code A = {T, _, _, _, _, _} like to be A = {T, SomewayReplace(4)} to replace that 4 symbol _ ???
update2
in real project, if some record include many element, I found it force me to repeat writing the symbol _, so I wonder if there is any way to simple it???
Writting A = Something means that you try to match A with Something or if A is unbound, assign Something to A. In anycase, Something must be defined.
You can find some shortcut in writting. For example, if you want to assign the result of a funtion to A, verify that the result is a tuple of 5 elements and assign the first element to T, the you can write:
A = {T,_,_,_,_} = f(Param).
The meaning of _T is exactly the same as any variable. It just says to th compiler to not issue a warning if this variable is not used in the code. It is frequent in pattern matching when you want to ignore the value of a variable but still keep trace of its meaning.
[edit]
It is not possible to write {T, SomewayReplace(4)}, but you may use records. A record is a tagged tuple (first element is the atom that identify this record. It is not shorter than placeholder for small tuples, but it is clearer, you don't need to remember the location of the information in your tuple, and it is easier to modify your code when you need to add a new element in a tuple. The syntax will be
-record(mytuple,{field1,...,fieldx,...}.
...
A = #mytuple{fieldx = T} = f(Param).
waerning: Records are managed by the compiler, so everything must be known at build time (#mytuple{Fieldx = T} is illegal, Fieldx cannot be a variable).
Why not use a record? Then you only match the fields you want to extract. As a by-effect, you make the code easier to debug, since you are forced to name the tuple by having a atom first.

Pattern matching on abstract forms

Disclaimer: I kept this because some things may be useful to others, however, it does not solve what I had initially tried to do.
Right now, I'm trying to solve the following:
Given something like {a, B, {c, D}} I want to scan through Erlang forms given to parse_transform/2 and find each use of the send operator (!). Then I want to check the message being sent and determine whether it would fit the pattern {a, B, {c, D}}.
Therefore, consider finding the following form:
{op,17,'!',
{var,17,'Pid'},
{tuple,17,[{atom,17,a},{integer,17,5},{var,17,'SomeVar'}]}}]}]}
Since the message being sent is:
{tuple,17,[{atom,17,a},{integer,17,5},{var,17,'SomeVar'}]}
which is an encoding of {a, 5, SomeVar}, this would match the original pattern of {a, B, {c, D}}.
I'm not exactly sure how I'm going to go about this but do you know of any API functions which could help?
Turning the given {a, B, {c, D}} into a form is possible by first substituting the variables with something, e.g. strings (and taking a note of this), else they'll be unbound, and then using:
> erl_syntax:revert(erl_syntax:abstract({a, "B", {c, "D"}})).
{tuple,0,
[{atom,0,a},
{string,0,"B"},
{tuple,0,[{atom,0,c},{string,0,"D"}]}]}
I was thinking that after getting them in the same format like this, I could analyze them together:
> erl_syntax:type({tuple,0,[{atom,0,a},{string,0,"B"},{tuple,0,[{atom,0,c},string,0,"D"}]}]}).
tuple
%% check whether send argument is also a tuple.
%% then, since it's a tuple, use erl_syntax:tuple_elements/1 and keep comparing in this way, matching anything when you come across a string which was a variable...
I think I'll end up missing something out (and for example recognizing some things but not others ... even though they should have matched).
Are there any API functions which I could use to ease this task? And as for a pattern match test operator or something along those lines, that does not exist right? (i.e. only suggested here: http://erlang.org/pipermail/erlang-questions/2007-December/031449.html).
Edit: (Explaining things from the beginning this time)
Using erl_types as Daniel suggests below is probably doable if you play around with the erl_type() returned by t_from_term/1 i.e. t_from_term/1 takes a term with no free variables so you'd have to stay changing something like {a, B, {c, D}} into {a, '_', {c, '_'}} (i.e. fill the variables), use t_from_term/1 and then go through the returned data structure and change the '_' atoms to variables using the module's t_var/1 or something.
Before explaining how I ended up going about it, let me state the problem a bit better.
Problem
I'm working on a pet project (ErlAOP extension) which I'll be hosting on SourceForge when ready. Basically, another project already exists (ErlAOP) through which one can inject code before/after/around/etc... function calls (see doc if interested).
I wanted to extend this to support injection of code at the send/receive level (because of another project). I've already done this but before hosting the project, I'd like to make some improvements.
Currently, my implementation simply finds each use of the send operator or receive expression and injects a function before/after/around (receive expressions have a little gotcha because of tail recursion). Let's call this function dmfun (dynamic match function).
The user will be specifying that when a message of the form e.g. {a, B, {c, D}} is being sent, then the function do_something/1 should be evaluated before the sending takes place. Therefore, the current implementation injects dmfun before each use of the send op in the source code. Dmfun would then have something like:
case Arg of
{a, B, {c, D}} -> do_something(Arg);
_ -> continue
end
where Arg can simply be passed to dmfun/1 because you have access to the forms generated from the source code.
So the problem is that any send operator will have dmfun/1 injected before it (and the send op's message passed as a parameter). But when sending messages like 50, {a, b}, [6, 4, 3] etc... these messages will certainly not match {a, B, {c, D}}, so injecting dmfun/1 at sends with these messages is a waste.
I want to be able to pick out plausible send operations like e.g. Pid ! {a, 5, SomeVar}, or Pid ! {a, X, SomeVar}. In both of these cases, it makes sense to inject dmfun/1 because if at runtime, SomeVar = {c, 50}, then the user supplied do_something/1 should be evaluated (but if SomeVar = 50, then it should not, because we're interested in {a, B, {c, D}} and 50 does not match {c, D}).
I wrote the following prematurely. It doesn't solve the problem I had. I ended up not including this feature. I left the explanation anyway, but if it were up to me, I'd delete this post entirely... I was still experimenting and I don't think what there is here will be of any use to anyone.
Before the explanation, let:
msg_format = the user supplied message format which will determine which messages being sent/received are interesting (e.g. {a, B, {c, D}}).
msg = the actual message being sent in the source code (e.g. Pid ! {a, X, Y}).
I gave the explanation below in a previous edit, but later found out that it wouldn't match some things it should. E.g. when msg_format = {a, B, {c, D}}, msg = {a, 5, SomeVar} wouldn't match when it should (by "match" I mean that dmfun/1 should be injected.
Let's call the "algorithm" outlined below Alg. The approach I took was to execute Alg(msg_format, msg) and Alg(msg, msg_format). The explanation below only goes through one of these. By repeating the same thing only getting a different matching function (matching_fun(msg_format) instead of matching_fun(msg)), and injecting dmfun/1 only if at least one of Alg(msg_format, msg) or Alg(msg, msg_format) returns true, then the result should be the injection of dmfun/1 where the desired message can actually be generated at runtime.
Take the message form you find in the [Forms] given to parse_transform/2 e.g. lets say you find: {op,24,'!',{var,24,'Pid'},{tuple,24,[{atom,24,a},{var,24,'B'},{var,24,'C'}]}}
So you would take {tuple,24,[{atom,24,a},{var,24,'B'},{var,24,'C'}]} which is the message being sent. (bind to Msg).
Do fill_vars(Msg) where:
-define(VARIABLE_FILLER, "_").
-spec fill_vars(erl_parse:abstract_form()) -> erl_parse:abstract_form().
%% #doc This function takes an abstract_form() and replaces all {var, LineNum, Variable} forms with
%% {string, LineNum, ?VARIABLE_FILLER}.
fill_vars(Form) ->
erl_syntax:revert(
erl_syntax_lib:map(
fun(DeltaTree) ->
case erl_syntax:type(DeltaTree) of
variable ->
erl_syntax:string(?VARIABLE_FILLER);
_ ->
DeltaTree
end
end,
Form)).
Do form_to_term/1 on 2's output, where:
form_to_term(Form) -> element(2, erl_eval:exprs([Form], [])).
Do term_to_str/1 on 3's output, where:
-define(inject_str(FormatStr, TermList), lists:flatten(io_lib:format(FormatStr, TermList))).
term_to_str(Term) -> ?inject_str("~p", [Term]).
Do gsub(v(4), "\"_\"", "_"), where v(4) is 4's output and gsub is: (taken from here)
gsub(Str,Old,New) -> RegExp = "\\Q"++Old++"\\E", re:replace(Str,RegExp,New,[global, multiline, {return, list}]).
Bind a variable (e.g. M) to matching_fun(v(5)), where:
matching_fun(StrPattern) ->
form_to_term(
str_to_form(
?inject_str(
"fun(MsgFormat) ->
case MsgFormat of
~s ->
true;
_ ->
false
end
end.", [StrPattern])
)
).
str_to_form(MsgFStr) ->
{_, Tokens, _} = erl_scan:string(end_with_period(MsgFStr)),
{_, Exprs} = erl_parse:parse_exprs(Tokens),
hd(Exprs).
end_with_period(String) ->
case lists:last(String) of
$. -> String;
_ -> String ++ "."
end.
Finally, take the user supplied message format (which is given as a string), e.g. MsgFormat = "{a, B, {c, D}}", and do: MsgFormatTerm = form_to_term(fill_vars(str_to_form(MsgFormat))). Then you can M(MsgFormatTerm).
e.g. with user supplied message format = {a, B, {c, D}}, and Pid ! {a, B, C} found in code:
2> weaver_ext:fill_vars({tuple,24,[{atom,24,a},{var,24,'B'},{var,24,'C'}]}).
{tuple,24,[{atom,24,a},{string,0,"_"},{string,0,"_"}]}
3> weaver_ext:form_to_term(v(2)).
{a,"_","_"}
4> weaver_ext:term_to_str(v(3)).
"{a,\"_\",\"_\"}"
5> weaver_ext:gsub(v(4), "\"_\"", "_").
"{a,_,_}"
6> M = weaver_ext:matching_fun(v(5)).
#Fun<erl_eval.6.13229925>
7> MsgFormatTerm = weaver_ext:form_to_term(weaver_ext:fill_vars(weaver_ext:str_to_form("{a, B, {c, D}}"))).
{a,"_",{c,"_"}}
8> M(MsgFormatTerm).
true
9> M({a, 10, 20}).
true
10> M({b, "_", 20}).
false
There is functionality for this in erl_types (HiPE).
I'm not sure you have the data in the right form for using this module though. I seem to remember that it takes Erlang terms as input. If you figure out the form issue you should be able to do most what you need with erl_types:t_from_term/1 and erl_types:t_is_subtype/2.
It was a long time ago that I last used these and I only ever did my testing runtime, as opposed to compile time. If you want to take a peek at usage pattern from my old code (not working any more) you can find it available at github.
I don't think this is possible at compile time in the general case. Consider:
send_msg(Pid, Msg) ->
Pid ! Msg.
Msg will look like a a var, which is a completely opaque type. You can't tell if it is a tuple or a list or an atom, since anyone could call this function with anything supplied for Msg.
This would be much easier to do at run time instead. Every time you use the ! operator, you'll need to call a wrapper function instead, which tries to match the message you are trying to send, and executes additional processing if the pattern is matched.

How to turn a string with a valid Erlang expression into an abstract syntax tree (AST)?

I would like to convert a string containing a valid Erlang expression to its abstract syntax tree representation, without any success so far.
Below is an example of what I would like to do. After compiling, alling z:z(). generates module zed, which by calling zed:zed(). returns the result of applying lists:reverse on the given list.
-module(z).
-export([z/0]).
z() ->
ModuleAST = erl_syntax:attribute(erl_syntax:atom(module),
[erl_syntax:atom("zed")]),
ExportAST = erl_syntax:attribute(erl_syntax:atom(export),
[erl_syntax:list(
[erl_syntax:arity_qualifier(
erl_syntax:atom("zed"),
erl_syntax:integer(0))])]),
%ListAST = ?(String), % This is where I would put my AST
ListAST = erl_syntax:list([erl_syntax:integer(1), erl_syntax:integer(2)]),
FunctionAST = erl_syntax:function(erl_syntax:atom("zed"),
[erl_syntax:clause(
[], none,
[erl_syntax:application(
erl_syntax:atom(lists),
erl_syntax:atom(reverse),
[ListAST]
)])]),
Forms = [erl_syntax:revert(AST) || AST <- [ModuleAST, ExportAST, FunctionAST]],
case compile:forms(Forms) of
{ok,ModuleName,Binary} -> code:load_binary(ModuleName, "z", Binary);
{ok,ModuleName,Binary,_Warnings} -> code:load_binary(ModuleName, "z", Binary)
end.
String could be "[1,2,3].", or "begin A=4, B=2+3, [A,B] end.", or anything alike.
(Note that this is just an example of what I would like to do, so evaluating String is not an option for me.)
EDIT:
Specifying ListAST as below generates a huge dict-digraph-error-monster, and says "internal error in lint_module".
String = "[1,2,3].",
{ok, Ts, _} = erl_scan:string(String),
{ok, ListAST} = erl_parse:parse_exprs(Ts),
EDIT2:
This solution works for simple terms:
{ok, Ts, _} = erl_scan:string(String),
{ok, Term} = erl_parse:parse_term(Ts),
ListAST = erl_syntax:abstract(Term),
In your EDIT example:
String = "[1,2,3].",
{ok, Ts, _} = erl_scan:string(String),
{ok, ListAST} = erl_parse:parse_exprs(Ts),
the ListAST is actually a list of AST:s (because parse_exprs, as the name indicates, parses multiple expressions (each terminated by a period). Since your string contained a single expression, you got a list of one element. All you need to do is match that out:
{ok, [ListAST]} = erl_parse:parse_exprs(Ts),
so it has nothing to do with erl_syntax (which accepts all erl_parse trees); it's just that you had an extra list wrapper around the ListAST, which caused the compiler to puke.
Some comments of the top of my head.
I have not really used the erl_syntax libraries but I do think they make it difficult to read and "see" what you are trying to build. I would probably import the functions or define my own API to make it shorter and more legible. But then I generally tend to prefer shorter function and variable names.
The AST created by erl_syntax and the "standard" one created by erl_parse and used in the compiler are different and cannot be mixed. So you have to choose one of them and stick with it.
The example in your second EDIT will work for terms but not in the more general case:
{ok, Ts, _} = erl_scan:string(String),
{ok, Term} = erl_parse:parse_term(Ts),
ListAST = erl_syntax:abstract(Term),
This because erl_parse:parse_term/1 returns the actual term represented by the tokens while the other erl_parse functions parse_form and parse_exprs return the ASTs. Putting them into erl_syntax:abstract will do funny things.
Depending on what you are trying to do it might actually be easier to actually write out and erlang file and compile it rather than working directly with the abstract forms. This goes against my ingrained feelings but generating the erlang ASTs is not trivial. What type of code do you intend to produce?
<shameless_plug>
If you are not scared of lists you might try using LFE (lisp flavoured erlang) to generate code as with all lisps there is no special abstract form, it's all homoiconic and much easier to work with.
</shameless_plug>
Zoltan
This is how we get the AST:
11> String = "fun() -> io:format(\"blah~n\") end.".
"fun() -> io:format(\"blah~n\") end."
12> {ok, Tokens, _} = erl_scan:string(String).
{ok,[{'fun',1},
{'(',1},
{')',1},
{'->',1},
{atom,1,io},
{':',1},
{atom,1,format},
{'(',1},
{string,1,"blah~n"},
{')',1},
{'end',1},
{dot,1}],
1}
13> {ok, AbsForm} = erl_parse:parse_exprs(Tokens).
{ok,[{'fun',1,
{clauses,[{clause,1,[],[],
[{call,1,
{remote,1,{atom,1,io},{atom,1,format}},
[{string,1,"blah~n"}]}]}]}}]}
14>

Resources