Why active patterns behave this way? - f#

I found this code in the excellent book F# Design Patterns by Gene Belitski:
let (| `` I'm active pattern `` |) x = x + 2
let (`` I'm active pattern `` y) = 40
(*
val ( |`` I'm active pattern ``| ) : x:int -> int
val y : int = 42
*)
The author recognizes that this is
"a slightly mind boggling example that becomes clear if you remember that the let binding of a value is a corner case of pattern matching based data disassembling, so I'm active pattern gets applied to input argument 40 and binds the result 42 to x."
I don't get it. Why does I'm active pattern gets applied to 40, given that 40 is on the right-hand side? Intuitively I would guess that y = 38, not 42, looking at the expression let (`` I'm active pattern `` y) = 40 as an implicit function.
Can anyone explain?

That's what makes active patterns special; with a normal function the definition let f x = ... mirrors the application of f: you can mentally evaluate f e by substituting e for x in the definition.
By contrast, with an active pattern let (|P|) x = ..., when you see let (P y) = e the fresh identifier y will get the result of applying the body of the definition to e.
This is perhaps easier to see with an active pattern where the result type differs from the input type:
let (|StringValue|) (i:int) = sprintf "%i" i
let (StringValue s) = 1 // s is of type string, with value "1"

Related

F# custom operator with 3 parameters

I found the following piece of code in the fantomas library for F#. I am having a hard time understanding this as an F# noob. From what I understand, it's a custom operator that takes 3 arguments, but why would an operator need 3 arguments? And what exactly is happening here?
/// Function composition operator
let internal (+>) (ctx: Context -> Context) (f: _ -> Context) x =
let y = ctx x
match y.WriterModel.Mode with
| ShortExpression infos when
infos
|> Seq.exists (fun x -> x.ConfirmedMultiline)
->
y
| _ -> f y
Here's an example of how fantomas uses this operator in ther CodePrinter module.
let short =
genExpr astContext e1
+> sepSpace
+> genInfixOperator "=" operatorExpr
+> sepSpace
+> genExpr astContext e2
Operators behave a lot like function names:
let (++) a b c d =
a + b + c + d
(++) 1 2 3 4
One difference is that operators can be used infix. An operator with more than 2 arguments allows infix only for the first 2 arguments:
// the following is equal:
let f = (++) 1 2 // like a function name
let f = 1 ++ 2 // with infix
f 50 60
I did not find how fantomas uses the operator you mention, would be curious, in particular since fantomas is a high profile f# project.
It might be instructive to compare this to the regular function composition operator, >>. The definition for this is:
let (>>) (f : a' -> b') (g : b' -> c') (x : a') =
g ( f x )
Esentially, it applies f to x, and then applies g to the result.
If we have the following functions:
let plusOne i = i + 1
let timesTwo j = j * 2
And apply it the following way:
let plusOneTimesTwo = plusOne >> timesTwo
What we're really doing is something like this:
let plusOneTimesTwo = (>>) plusOne timesTwo
When you don't supply all of the necessary arguments to a function (in this case, x), what you get is a function that takes the remaining arguments and then returns what the original function would return (this is partial application.) In this case, plusOneTimesTwo's function signature is now x : int -> int.
The example you've listed is essentially the same thing, but it's performing additional logic to determine whether it wants to apply the second function to the result y or to return it as-is.

Function return tuple and the result is assigned to new variables

I've just started learning F# very recently. I have a function which counts the coefficients of the linear equation: y = ax + b, based on coordinates of two points P1(x1, y1), P2(x1, y2). The function looks like this:
module LinearFit
let generate(x1 : double, y1 : double, x2 : double, y2 : double) =
let w = x1 * 1.0 - x2 * 1.0
let wa = y1 * 1.0 - y2 * 1.0
let wb = x1 * y2 - x2 * y1
printfn "w: %g" w
printfn "wa: %g" wa
printfn "wb: %g" wb
let a = wa/w
let b = wb/w
printfn "a: %g" a
printfn "b: %g" b
printfn "%g %g" a b
(a, b)
I'm trying to somehow return founded coefficients as a tuple result and then assign the result to the new variables so later I can use the result to do some other operations. The trivial thing, for now, would be just displayed a result like:
The generated function is y = 2.5x - 6.5
So far I was trying to do sth like this
open System
let main() =
printf "Linear fit"
(a: double, b: double) <- LinearFit.generate(5.0, 6.0, 7.0, 11.0)
printfn "The generated functi..."
main()
Console.ReadKey() |> ignore
This is only a concept as I'm not even able to compile the project as im getting errors:
"Unexpected symbol ',' in expression"
"Unexpected symbol ')' in binding."
I tried to find some similar approach to C#...
For now what I want to achieve is just to assing the result of generate function to some variables. In C# it would look just like
public (double a, double b) Generate(some params here)
{
// some logic here
return (a, b);
}
(var a, var b) = Generate(...);
Any ideas?
You're making several syntactic mistakes.
First, the arrow-left operator <- is destructive update. It takes a mutable variable on the right and an expression on the left, and pushes the value of the expression into the variable. For example:
let mutable x = 5
x <- 42
In your example, neither a nor b are mutable variables that exist by the time you're trying to use the <- operator. Plus, the operator expects a single mutable variable, not a pattern.
Second, the way to declare new variables in F# is with let. It is roughly equivalent to var in C#, except you can declare multiple variables at once by putting them in a pattern. For example:
let x = 42
let pair = (1, 5)
let a, b = pair
Here, on the last line, I'm declaring two variables a and b by destructuring the pair.
In your example, you're trying to introduce the two new variables a and b without a let keyword. This is not allowed.
So, putting all of the above together, this is the right way to do what you're trying to do:
let main() =
printf "Linear fit"
let a, b = LinearFit.generate(5.0, 6.0, 7.0, 11.0)
printfn "The generated functi..."
P.S. Your question betrays a misunderstanding of some pretty basic principles of F# syntax. Because of this, I would recommend that you read through tutorials, examples, and other articles on F# to familiarize yourself with the syntax before attempting to venture farther.

Confusing anonymous function construct

I'm reading through an F# tutorial, and ran into an example of syntax that I don't understand. The link to the page I'm reading is at the bottom. Here's the example from that page:
let rec quicksort2 = function
| [] -> []
| first::rest ->
let smaller,larger = List.partition ((>=) first) rest
List.concat [quicksort2 smaller; [first]; quicksort2 larger]
// test code
printfn "%A" (quicksort2 [1;5;23;18;9;1;3])
The part I don't understand is this: ((>=) first). What exactly is this? For contrast, this is an example from the MSDN documentation for List.partition:
let list1 = [ 1 .. 10 ]
let listEven, listOdd = List.partition (fun elem -> elem % 2 = 0) list1
printfn "Evens: %A\nOdds: %A" listEven listOdd
The first parameter (is this the right terminology?) to List.partition is obviously an anonymous function. I rewrote the line in question as this:
let smaller,larger = List.partition (fun e -> first >= e) rest
and it works the same as the example above. I just don't understand how this construct accomplishes the same thing: ((>=) first)
http://fsharpforfunandprofit.com/posts/fvsc-quicksort/
That's roughly the same thing as infix notation vs prefix notation
Operator are functions too and follow the same rule (ie. they can be partially applied)
So here (>=) first is the operator >= with first already applied as "first" operand, and gives back a function waiting for the second operand of the operator as you noticed when rewriting that line.
This construct combines two features: operator call with prefix notation and partial function application.
First, let's look at calling operators with prefix notation.
let x = a + b
The above code calls operator + with two arguments, a and b. Since this is a functional language, everything is a function, including operators, including operator +. It's just that operators have this funny call syntax, where you put the function between the arguments instead of in front of them. But you can still treat the operator just as any other normal function. To do that, you need to enclose it on parentheses:
let x = (+) a b // same thing as a + b.
And when I say "as any other function", I totally mean it:
let f = (+)
let x = f a b // still same thing.
Next, let's look at partial function application. Consider this function:
let f x y = x + y
We can call it and get a number in return:
let a = f 5 6 // a = 11
But we can also "almost" call it by supplying only one of two arguments:
let a = f 5 // a is a function
let b = a 6 // b = 11
The result of such "almost call" (technically called "partial application") is another function that still expects the remaining arguments.
And now, let's combine the two:
let a = (+) 5 // a is a function
let b = a 6 // b = 11
In general, one can write the following equivalency:
(+) x === fun y -> x + y
Or, similarly, for your specific case:
(>=) first === fun y -> first >= y

What's the meaning of the `in` keyword in this example (F#)

I've been trying to get my head round various bits of F# (I'm coming from more of a C# background), and parsers interest me, so I jumped at this blog post about F# parser combinators:
http://santialbo.com/blog/2013/03/24/introduction-to-parser-combinators
One of the samples here was this:
/// If the stream starts with c, returns Success, otherwise returns Failure
let CharParser (c: char) : Parser<char> =
let p stream =
match stream with
| x::xs when x = c -> Success(x, xs)
| _ -> Failure
in p //what does this mean?
However, one of the things that confused me about this code was the in p statement. I looked up the in keyword in the MSDN docs:
http://msdn.microsoft.com/en-us/library/dd233249.aspx
I also spotted this earlier question:
Meaning of keyword "in" in F#
Neither of those seemed to be the same usage. The only thing that seems to fit is that this is a pipelining construct.
The let x = ... in expr allows you to declare a binding for some variable x which can then be used in expr.
In this case p is a function which takes an argument stream and then returns either Success or Failure depending on the result of the match, and this function is returned by the CharParser function.
The F# light syntax automatically nests let .. in bindings, so for example
let x = 1
let y = x + 2
y * z
is the same as
let x = 1 in
let y = x + 2 in
y * z
Therefore, the in is not needed here and the function could have been written simply as
let CharParser (c: char) : Parser<char> =
let p stream =
match stream with
| x::xs when x = c -> Success(x, xs)
| _ -> Failure
p
The answer from Lee explains the problem. In F#, the in keyword is heritage from earlier functional languages that inspired F# and required it - namely from ML and OCaml.
It might be worth adding that there is just one situation in F# where you still need in - that is, when you want to write let followed by an expression on a single line. For example:
let a = 10
if (let x = a * a in x = 100) then printfn "Ok"
This is a bit funky coding style and I would not normally use it, but you do need in if you want to write it like this. You can always split that to multiple lines though:
let a = 10
if ( let x = a * a
x = 100 ) then printfn "Ok"

Reverse currying?

I'd like to compose functions in a certain way. Please consider these 2 functions in pseudocode (not F#)
F1 = x + y
F2 = F1 * 10 // note I did not specify arguments for F1, 'reverse curry' for lack of a better word
What I would like for F# to do is figure out that since
let F1 x y = x + y
//val F1 : int -> int -> int
the code let F2 = F1 * 10 would give me the same signature as F1: val F2 : int -> int -> int, and calling F2 2 3 would result in 50: (2 + 3) * 10. That would be rather clever...
What happens is quite different tho. The first line goes as expected:
let F1 x y = x + y
//val F1 : int -> int -> int
but when I add a second line let F2 = F1 * 10 it throws off F#. It complains that the type int does not match the type 'a -> 'b -> 'c and that F1 now requires member ( + ).
I could of course spell it out like this:
let F1(x, y) = x + y
let F2(x, y) = F1(x, y) * 10
But now I might as well have used C#, we're not that far away anymore. The tupled arguments break a lot of the elegance of F#. Also my real functions F1 and F2 have a lot more arguments than just 2, so this makes me go cross eyed, exactly what I wanted to dodge by using F#. Saying it like this would be much more natural:
let F1 x y = x + y
let F2 = F1 * 10
Is there any way I can (almost) do that?
For extra credits: what exactly goes on with these error messages? Why does the second line let F2 = F1 * 10 change the typing on the first?
Thanks in advance for your thoughts,
Gert-Jan
update
Two apporaches that (almost) do what's described.
One using a tuple. Second line looks a little quirky a first, works fine. Small drawback is I can't use currying now or I'll have to add even more quirky code.
let F1 (a, b) = a + b
let F2 = F1 >> (*) 10
F2(2, 3) // returns 50
Another approach is using a record. That is a little more straight forward and easier to get at first glance, but requieres more code and ceremony. Does remove some of the elegance of F#, looks more like C#.
type Arg (a, b) =
member this.A = a
member this.B = b
let F1 (a:Arg) = a.A + a.B
let F2 (a:Arg) = F1(a) * 10
F2 (Arg(2, 3)) // returns 50
There is no pattern for this in general. Using combinators (like curry and uncurry) as suggested by larsmans is one option, but I think the result is less readable and longer than the explicit version.
If you use this particular pattern often, you could define an operator for multiplying a function (with two parameters) by a scalar:
let ( ** ) f x = fun a b -> (f a b) * x
let F1 x y = x + y
let F2 = F1 ** 10
Unfortunately, you cannot add implementation of standard numeric operators (*, etc.) to existing types (such as 'a -> 'b -> int). However, this is quite frequent request (and it would be useful for other things). Alternatively, you could wrap the function into some object that provides overloaded numeric operators (and contains some Invoke method for running the function).
I think an appropriate name for this would be lifting - you're lifting the * operator (working on integers) to a version that works on functions returning integers. It is similar to lifting that is done in the C# compiler when you use * to work with nullable types.
To explain the error message - It complains about the expression F1 * 10:
error FS0001: The type 'int' does not match the type ''a -> 'b -> 'c'
I think it means that the compiler is trying to find an instantiation for the * operator. From the right-hand side, it figures out that this should be int, so it thinks that the left-hand side should also be int - but it is actually a function of two arguments - something like 'a -> 'b -> c'.
That would be rather clever...
So clever that it would beat the hell out of the type system. What you want is array programming as in APL.
Is there any way I can (almost) do that?
I don't speak F#, but in Haskell, you'd uncurry F1, then compose with *10, then curry:
f2 = curry ((*10) . uncurry f1)
Which in an ML dialect such as F# becomes something like:
let curry f x y = f (x,y)
let uncurry f (x,y) = f x y
let mult x y = x * y
let F1 x y = x + y
let F2 = curry (uncurry F1 >> mult 10)
(I wasn't sure if curry and uncurry are in the F# standard library, so I defined them. There may also be a prettier way of doing partial application of * without defining mult.)
BTW, using point-free (or rather pointless in this case) approach one could define these functions in the following way:
let F1 = (+)
let F2 = (<<)((*)10) << F1

Resources