How tf.gradients work in TensorFlow - machine-learning

Given I have a linear model as the following I would like to get the gradient vector with regards to W and b.
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model
pred = tf.add(tf.mul(X, W), b)
# Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
However if I try something like this where cost is a function of cost(x,y,w,b) and I only want to gradients with respect to w and b:
grads = tf.gradients(cost, tf.all_variable())
My placeholders will also be included (X and Y).
Even if I do get a gradient with [x,y,w,b] how do I know which element in the gradient that belong to each parameter since it is just a list without names to which parameter the derivative has be taken with regards to?
In this question I'm using parts of this code and I build on this question.

Quoting the docs for tf.gradients
Constructs symbolic partial derivatives of sum of ys w.r.t. x in xs.
So, this should work:
dc_dw, dc_db = tf.gradients(cost, [W, b])
Here, tf.gradients() returns the gradient of cost wrt each tensor in the second argument as a list in the same order.
Read tf.gradients for more information.

Related

Efficient pseudo-inverse for PyTorch 2D convolution

Background:
Thanks for your attention! I am learning the basic knowledge of 2D convolution, linear algebra and PyTorch. I encounter the implementation problem about the psedo-inverse of the convolution operator. Specifically, I have no idea about how to implement it in an efficient way. Please see the following problem statements for details. Any help/tip/suggestion is welcomed.
(Thanks a lot for your attention!)
The Original Problem:
I have an image feature x with shape [b,c,h,w] and a 3x3 convolutional kernel K with shape [c,c,3,3]. There is y = K * x. How to implement the corresponding pseudo-inverse on y in an efficient way?
There is [y = K * x = Ax], how to implement [x_hat = (A^+)y]?
I guess that there should be some operations using torch.fft. However, I still have no idea about how to implement it. I do not know if there exists an implementation previously.
import torch
import torch.nn.functional as F
c = 32
K = torch.randn(c, c, 3, 3)
x = torch.randn(1, c, 128, 128)
y = F.conv2d(x, K, padding=1)
print(y.shape)
# How to implement pseudo-inverse for y = K * x in an efficient way?
Some of My Efforts:
I may know that the 2D convolution is a linear operator. It is equivalent to a "matrix product" operator. We can actually write out the matrix form of the convolution and calculate its psedo-inverse. However, I think this type of operation will be inefficient. And I have no idea about how to implement it in an efficient way.
According to Wikipedia, the psedo-inverse may satisfy the property of A(A_pinv(x))=x, where A is the convolutional operator, A_pinv is its psedo-inverse, and x may be any image feature.
(Thanks again for reading such a long post!)
This takes the problem to another level.
The convolution itself is a linear operation, you can determine the matrix of the operation and solve a least square problem directly [1], or compute the pseudo-inverse as you mentioned, and then apply to different outputs and predicting a projection of the input.
I am changing your code to using padding=0
import torch
import torch.nn.functional as F
# your code
c = 32
K = torch.randn(c, c, 1, 1)
x = torch.randn(4, c, 128, 128)
y = F.conv2d(x, K, bias=torch.zeros((c,)))
Also, as you probably already suggested the convolution can be computed as ifft(fft(h)*fft(x)). However, the conv2d function is a cross-correlation, so you have to conjugate the filter leading to ifft(fft(h)*fft(x)), also you have to apply this to two axes, and you have to make sure the FFT is calcuated using the same representation (size), since the data is real, we can apply multi-dimensional real FFT. To be complete, conv2d works on multiple channels, so we have to calculate summations of convolutions. Since the FFT is linear, we can simply compute the summations on the frequency domain
using einsum.
s = y.shape[-2:]
K_f = torch.fft.rfftn(K, s)
x_f = torch.fft.rfftn(x, s)
y_f = torch.einsum('jkxy,ikxy->ijxy', K_f.conj(), x_f)
y_hat = torch.fft.irfftn(y_f, s)
Except for the borders it should be accurate (remember FFT computes a cyclic convolution).
torch.max(abs(y_hat[:,:,:-2,:-2] - y[:,:,:,:]))
Now, notice the pattern jk,ik->ij on the einsum, that means y_f[i,j] = sum(K_f[j,k] * x_f[i,k]) = x_f # K_f.T, if # is the matrix product on the first two dimensions. So to invert this operation we have to can interpret the first two dimensions as matrices. The function pinv will compute pseudo-inverses on the last two axes, so in order to use that we have to permute the axes. If we right multiply the output by the pseudo-inverse of transposed K_f we should invert this operation.
s = 128,128
K_f = torch.fft.rfftn(K, s)
K_f_inv = torch.linalg.pinv(K_f.T).T
y_f = torch.fft.rfftn(y_hat, s)
x_f = torch.einsum('jkxy,ikxy->ijxy', K_f_inv.conj(), y_f)
x_hat = torch.fft.irfftn(x_f, s)
print(torch.mean((x - x_hat)**2) / torch.mean((x)**2))
Nottice that I am using the full convolution, but the conv2d actually cropped the images. Let's apply that
y_hat[:,:,128-(k-1):,:] = 0
y_hat[:,:,:,128-(k-1):] = 0
Repeating the calculation you will see that the input is not accurate anymore, so you have to be careful about what you do with your convolution, but in some situations where you can get this to work it will be in fact efficient.
s = 128,128
K_f = torch.fft.rfftn(K, s)
K_f_inv = torch.linalg.pinv(K_f.T).T
y_f = torch.fft.rfftn(y_hat, s)
x_f = torch.einsum('jkxy,ikxy->ijxy', K_f_inv.conj(), y_f)
x_hat = torch.fft.irfftn(x_f, s)
print(torch.mean((x - x_hat)**2) / torch.mean((x)**2))

Ambiguity in recurrent neural network training in Julia Flux

I'm using Julia's Flux library to learn about neural networks. According to the documentation for train! (where train! takes arguments (loss, params, data, opt)):
For each datapoint d in data, compute the gradient of loss with respect to params through backpropagation and call the optimizer opt.
(see source for train!: https://github.com/FluxML/Flux.jl/blob/master/src/optimise/train.jl)
For a conventional NN based on Dense -- let's say with a one-dimensional input and output, i.e. with one feature -- this is easy to understand. Each element in data is a pair of single numbers, an independent sample of 1-d input/output values. train! does forward- and backpropagation on each pair of 1-d samples one at a time. In the process, the loss function is evaluated on each sample. (Do I have this right?)
My question is: how does this extend to a recurrent NN? Take the case of an RNN with 1-d (i.e. one feature) input and output. It seems like there's some ambiguity in how to structure the input and output data, and the results change based on the structure. As one example:
x = [[1], [2], [3]]
y = [4, 5, 6]
data = zip(x, y)
m = RNN(1, 1)
opt = Descent()
loss(x, y) = sum((Flux.stack(m.(x), 1) .- y) .^ 2)
train!(loss, params(m), data, opt)
(loss function taken from: https://github.com/FluxML/Flux.jl/blob/master/docs/src/models/recurrence.md)
In this example, when train! loops through each sample (for d in data), each value of d is a pair of single values from x and y, e.g. ([1], 4). loss is evaluated based on these single values. This is the same as in the Dense case.
On the other hand, consider:
x = [[[1], [2], [3]]]
y = [[4, 5, 6]]
m = RNN(1, 1)
opt = Descent()
loss(x, y) = sum((Flux.stack(m.(x), 1) .- y) .^ 2)
train!(loss, params(m), zip(x, y), opt)
Note that the only difference here is that x and y are nested in an extra pair of square brackets. As a result there's only one d in data, and it's a pair of sequences: ([[1], [2], [3]], [4, 5, 6]). loss can be evaluated on this version of d, and it returns a 1-d value, as required for training. But the value returned by loss is different than in any of the three results from the previous case, so the training process turns out differently.
The point is that both structures are valid in the sense that loss and train! handle them without error. Conceptually, I can make an argument for both structures being correct. But the results are different, and I assume that only one way is right. In other words, for training an RNN, should each d in data be a whole sequence, or a single element from a sequence?

Why do I get NONE gradient of parameters in a loaded model in Pytorch, even after backword?

I have a pretrained model which was saved by
torch.save(net, 'lenet5_mnist_model')
And now I am loading it back and trying to calculate fisher information matrix like this:
precision_matrices = {}
batch_size = 32
my_model = torch.load('lenet5_mnist_model')
my_model.eval() # I tried to comment this off, but still no luck
for n, p in deepcopy({n: p for n, p in my_model.named_parameters()}).items()
p = torch.tensor(p, requires_grad = True)
p.data.zero_()
precision_matrices[n] = variable(p.data)
for idx in range(int(images.shape[0]/batch_size)):
x = images[idx*batch_size : (idx+1)*batch_size]
my_model.zero_grad()
x = Variable(x.cuda(), requires_grad = True)
output = my_model(x).view(1,-1)
label = output.max(1)[1].view(-1)
loss = F.nll_loss(F.log_softmax(output, dim=1), label)
loss = Variable(loss, requires_grad = True)
loss.backward()
for n, p in my_model.named_parameters():
precision_matrices[n].data += p.grad.data**2
Finally, the above code will crash at the last line, because p.grad is NoneType. So the error is:
AttributeError: 'NoneType' object has no attribute 'data'.
Could someone provide some guidance on what caused the NoneType grad for the parameters? How should I fix this?
Your loss does not backpropagate the gradients through the model, because you are creating a new loss tensor with the value of the actual loss, which is a leaf of the computational graph, meaning that there is no history to backpropagate through.
loss.backward() needs to be called on the output of loss = F.nll_loss(F.log_softmax(output, dim=1), label).
I'm assuming that you thought you need to create a tensor with requires_grad=True, to be able to calculate the gradients. That is not the case. Tensors created with requires_grad=True are the leaves of the computational graph (they start the graph) and every operation performed on any tensor that is part of the graph is tracked such that the gradients can flow through the intermediate results to the leaves. Only tensors that need to be optimised (i.e. learnable parameters) should set requires_grad=True manually (the model's parameters do that automatically), everything else regarding the gradients is inferred. Neither x nor the loss are learnable parameters.
This confusion presumably arose due to the use of Variable. It was deprecated in PyTorch 0.4.0, which was released over 2 years ago, and all of its functionality has been merged into the tensors. Please do not use Variable.
x = images[idx*batch_size : (idx+1)*batch_size]
my_model.zero_grad()
x = x.cuda()
output = my_model(x).view(1,-1)
label = output.max(1)[1].view(-1)
loss = F.nll_loss(F.log_softmax(output, dim=1), label)
loss.backward()

Importance weighted autoencoder doing worse than VAE

I've been implementing VAE and IWAE models on the caltech silhouettes dataset and am having an issue where the VAE outperforms IWAE by a modest margin (test LL ~120 for VAE, ~133 for IWAE!). I don't believe this should be the case, according to both theory and experiments produced here.
I'm hoping someone can find some issue in how I'm implementing that's causing this to be the case.
The network I'm using to approximate q and p is the same as that detailed in the appendix of the paper above. The calculation part of the model is below:
data_k_vec = data.repeat_interleave(K,0) # Generate K samples (in my case K=50 is producing this behavior)
mu, log_std = model.encode(data_k_vec)
z = model.reparameterize(mu, log_std) # z = mu + torch.exp(log_std)*epsilon (epsilon ~ N(0,1))
decoded = model.decode(z) # this is the sigmoid output of the model
log_prior_z = torch.sum(-0.5 * z ** 2, 1)-.5*z.shape[1]*T.log(torch.tensor(2*np.pi))
log_q_z = compute_log_probability_gaussian(z, mu, log_std) # Definitions below
log_p_x = compute_log_probability_bernoulli(decoded,data_k_vec)
if model_type == 'iwae':
log_w_matrix = (log_prior_z + log_p_x - log_q_z).view(-1, K)
elif model_type =='vae':
log_w_matrix = (log_prior_z + log_p_x - log_q_z).view(-1, 1)*1/K
log_w_minus_max = log_w_matrix - torch.max(log_w_matrix, 1, keepdim=True)[0]
ws_matrix = torch.exp(log_w_minus_max)
ws_norm = ws_matrix / torch.sum(ws_matrix, 1, keepdim=True)
ws_sum_per_datapoint = torch.sum(log_w_matrix * ws_norm, 1)
loss = -torch.sum(ws_sum_per_datapoint) # value of loss that gets returned to training function. loss.backward() will get called on this value
Here are the likelihood functions. I had to fuss with the bernoulli LL in order to not get nan during training
def compute_log_probability_gaussian(obs, mu, logstd, axis=1):
return torch.sum(-0.5 * ((obs-mu) / torch.exp(logstd)) ** 2 - logstd, axis)-.5*obs.shape[1]*T.log(torch.tensor(2*np.pi))
def compute_log_probability_bernoulli(theta, obs, axis=1): # Add 1e-18 to avoid nan appearances in training
return torch.sum(obs*torch.log(theta+1e-18) + (1-obs)*torch.log(1-theta+1e-18), axis)
In this code there's a "shortcut" being used in that the row-wise importance weights are being calculated in the model_type=='iwae' case for the K=50 samples in each row, while in the model_type=='vae' case the importance weights are being calculated for the single value left in each row, so that it just ends up calculating a weight of 1. Maybe this is the issue?
Any and all help is huge - I thought that addressing the nan issue would permanently get me out of the weeds but now I have this new problem.
EDIT:
Should add that the training scheme is the same as that in the paper linked above. That is, for each of i=0....7 rounds train for 2**i epochs with a learning rate of 1e-4 * 10**(-i/7)
The K-sample importance weighted ELBO is
$$ \textrm{IW-ELBO}(x,K) = \log \sum_{k=1}^K \frac{p(x \vert z_k) p(z_k)}{q(z_k;x)}$$
For the IWAE there are K samples originating from each datapoint x, so you want to have the same latent statistics mu_z, Sigma_z obtained through the amortized inference network, but sample multiple z K times for each x.
So its computationally wasteful to compute the forward pass for data_k_vec = data.repeat_interleave(K,0), you should compute the forward pass once for each original datapoint, then repeat the statistics output by the inference network for sampling:
mu = torch.repeat_interleave(mu,K,0)
log_std = torch.repeat_interleave(log_std,K,0)
Then sample z_k. And now repeat your datapoints data_k_vec = data.repeat_interleave(K,0), and use the resulting tensor to efficiently evaluate the conditional p(x |z_k) for each importance sample z_k.
Note you may also want to use the logsumexp operation when calculating the IW-ELBO for numerical stability. I can't quite figure out what's going on with the log_w_matrix calculation in your post, but this is what I would do:
log_pz = ...
log_qzCx = ....
log_pxCz = ...
log_iw = log_pxCz + log_pz - log_qzCx
log_iw = log_iw.reshape(-1, K)
iwelbo = torch.logsumexp(log_iw, dim=1) - np.log(K)
EDIT: Actually after thinking about it a bit and using the score function identity, you can interpret the IWAE gradient as an importance weighted estimate of the standard single-sample gradient, so the method in the OP for calculation of the importance weights is equivalent (if a bit wasteful), provided you place a stop_gradient operator around the normalized importance weights, which you call w_norm. So I the main problem is the absence of this stop_gradient operator.

Create a List and Use it in Loss Function Tensorflow

I am trying to create a list based on my neural network outputs and use it in Tensorflow as a loss function.
Assume that results is list of size [1, batch_size] that is output by a neural network. I check to see whether the first value of this list is in a specific range passed in as a placeholder called valid_range, and if it is add 1 to a list. If it is not, add -1. The goal is to make all predictions of the network in the range, so the correct predictions is a tensor of all 1, which I call correct_predictions.
values_list = []
for j in range(batch_size):
a = results[0, j] >= valid_range[0]
b = result[0, j] <= valid_range[1]
c = tf.logical_and(a, b)
if (c == 1):
values_list.append(1)
else:
values_list.append(-1.)
values_list_tensor = tf.convert_to_tensor(values_list)
correct_predictions = tf.ones([batch_size, ], tf.float32)
Now, I want to use this as a loss function in my network, so that I can force all the predictions to be in the specified range. I try to train like this:
loss = tf.reduce_mean(tf.squared_difference(values_list_tensor, correct_predictions))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
gradients, variables = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, gradient_clip_threshold)
optimize = optimizer.apply_gradients(zip(gradients, variables))
This, however, has a problem and throws an error on the last optimize line, saying:
ValueError: No gradients provided for any variable: ['<tensorflow.python.training.optimizer._RefVariableProcessor object at 0x7f0245d4afd0>',
'<tensorflow.python.training.optimizer._RefVariableProcessor object at 0x7f0245d66050>'
...
I tried to debug this in Tensorboard, and I notice that the list I am creating does not appear in the graph, so basically the x part of the loss function is not part of the network itself. Is there some way to accurately create a list based on the predictions of a neural network and use it in the loss function in Tensorflow to train the network?
Please help, I have been stuck on this for a few days now.
Edit:
Following what was suggested in the comments, I decided to use a l2 loss function, multiplying it by the binary vector I had from before values_list_tensor. The binary vector now has values 1 and 0 instead of 1 and -1. This way when the prediction is in the range the loss is 0, else it is the normal l2 loss. As I am unable to see the values of the tensors, I am not sure if this is correct. However, I can view the final loss and it is always 0, so something is wrong here. I am unsure if the multiplication is being done correctly and if values_list_tensor is calculated accurately? Can someone help and tell me what could be wrong?
loss = tf.reduce_mean(tf.nn.l2_loss(tf.matmul(tf.transpose(tf.expand_dims(values_list_tensor, 1)), tf.expand_dims(result[0, :], 1))))
Thanks
To answer the question in the comment. One way to write a piece-wise function is using tf.cond. For example, here is a function that returns 0 in [-1, 1] and x everywhere else:
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32)
y = tf.cond(tf.logical_or(tf.greater(x, 1.0), tf.less(x, -1.0)), lambda : x, lambda : 0.0)
y.eval({x: 1.5}) # prints 1.5
y.eval({x: 0.5}) # prints 0.0

Resources