Using TensorFlow to do regression on a 13 column data set - machine-learning

I would like to do regression on a 13 column data set. The second column is dependent on the rest of the 12 columns. All column contains real number values.
How can I create a neural network using TensorFlow to do the regression? I have tried going through this tutorial but it is too advanced for me.
Thanks in advance for a MWE.

In that tutorial they are using logistic regression, that is a linear binary classifier. They use the class tf.contrib.learn.LinearClassifier as their model.
If you use class tf.contrib.learn.LinearRegressor then you can do linear regression instead of classification.
In that webpage you have tutorials for other models. If you want to create a neural network you have different tutorial in the left menu, for example:
https://www.tensorflow.org/tutorials/mnist/beginners/
In this repository you have python notebooks with the full code of many different neural networks:
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/udacity

Related

Image Classification using Single Class Dataset using Transfer Learning

I only have around 1000 images of vehicle. I need to train a model that can identify if the image is vehicle or not-vehicle. I do not have a dataset for not-vehicle, as it could be anything besides vehicle.
I guess the best method for this would be to apply transfer learning. I am trying to train data on a pre-trained VGG19 Model. But still, I am unaware on how to train a model with just vehicle images without any non-vehicle images. I am not being able to classify it.
I am new to ML Overall, Any solution based on practical implementation will be highly appreciated.
You are right about transfer learning approach. Have a look a this article, it is exactly about going from multi-class to binary classification with transfer learning - https://medium.com/#mandygu/seefood-creating-a-binary-classifier-using-transfer-learning-da751db7cf9c
You can try using pretrained model and take the output. You might need to apply dimensionality reduction e.g. PCA, to get a more managable size input. After that you can train novelty detection model to identify whether the output is different than your training set.
Refer to this example: https://github.com/J-Yash/Hotdog-Not-Hotdog
Hope this helps.
This is a binary classification problem: whether the input is a vehicle or not.
If you are new to ML, I would suggest you should start implementing basic binary classifiers like Logistic Regression, Support Vector Machines before jumping to Convolutional Neural Networks (CNNs).
I am providing some links for the binary classification problem implementations using different algorithms. I hope this would help.
Logistic Regression: https://github.com/JB1984/Logistic-Regression-Cat-Classifier
SVM: https://github.com/Witsung/SVM-Fruit-Image-Classifier
CNN: https://github.com/A-Jatin/CNN-implementation-for-binary-image-classification

Image classification, narrow domain with custom labels

Let's suppose I would like to classify motorbikes by model.
there are couple of hundreds models of motorbikes I'm interested in.
I do have tens, sometimes hundreds of pictures of each motorbike model.
Can you please point me to the practical example that demonstrates how to train model on your data and then use it to classify images? It needs to be a deep learning model, not simple logistic regression.
I'm not sure about it, but it seems like I can't use pre-trained neural net because it has been trained on wide range of objects like cat, human, cars etc. They may be not too good at distinguishing the motorbike nuances I'm interested in.
I found couple of such examples (tensorflow has one), but sadly, all of them were using pre-trained model. None of it had example how to train it on your own dataset.
In cases like yours you either use transfer learning or fine tuning. If you have more then thousand images of motorbikes I would use fine tuning and if you have less transfer learning.
Fine tuning is using a pre trained model and using a different classifier part. Then the new classifier part maybe the last 1-2 layers of the trained model are trained to your dataset.
Transfer learning means using a pre trained model and letting it output features for an input image. Now you use a new classifier based on those features. Maybe a SVM or a logistic regression.
An example for this can be seen here: https://github.com/cpra/dlvc2016/blob/master/lectures/lecture10.pdf. slide 33.
This paper Quick, Draw! Doodle Recognition from a kaggle challenge may be similar enough to what you are doing. The code is on github. You may need some data augmentation if you only have a few hundred images for each category.
What you want is pretty EZ. Follow the darknet YOLO implementation
Instruction: https://pjreddie.com/darknet/yolo/
Code https://github.com/pjreddie/darknet
Training YOLO on COCO
You can train YOLO from scratch if you want to play with different training regimes, hyper-parameters, or datasets. Here's how to get it working on the COCO dataset.
Get The COCO Data
To train YOLO you will need all of the COCO data and labels. The script scripts/get_coco_dataset.sh will do this for you. Figure out where you want to put the COCO data and download it, for example:
cp scripts/get_coco_dataset.sh data
cd data
bash get_coco_dataset.sh
Add your data inside and make sure it is same as testing samples.
Now you should have all the data and the labels generated for Darknet.
Then call training script with the pre-trained weight.
Keep in mind that only training on your motorcycle may not result in good estimation. There would be biased result coming out, I red it somewhere b4.
The rest is all inside the link. Good luck

Image similarity detection with TensorFlow

Recently I started to play with tensorflow, while trying to learn the popular algorithms i am in a situation where i need to find similarity between images.
Image A is supplied to the system by me, and userx supplies an image B and the system should retrieve image A to the userx if image B is similar(color and class).
Now i have got few questions:
Do we consider this scenario to be supervised learning? I am asking
because i don't see it as a classification problem(confused!!)
What algorithms i should use to train etc..
Re-training should be done quite often, how should i tackle this
problem so i don't train everytime from scratch( fine-tuning??)
Do we consider this scenario to be supervised learning?
It is supervised learning when you have labels to optimize your model. So for most neural networks, it is supervised.
However, you might also look at the complete task. I guess you don't have any ground truth for image pairs and the "desired" similarity value your model should output?
One way to solve this problem which sounds inherently unsupervised is to take a CNN (convolutional neural network) trained (in a supervised way) on the 1000 classes of image net. To get the similarity of two images, you could then simply take the euclidean distance of the output probability distribution. This will not lead to excellent results, but is probably a good starter.
What algorithms i should use to train etc..
First, you should define what "similar" means for you. Are two images similar when they contain the same object (classes)? Are they similar if the general color of the image is the same?
For example, how similar are the following 3 pairs of images?
Have a look at FaceNet and search for "Content based image retrieval" (CBIR):
Wikipedia
Google Scholar
This can be a supervised learning. You can classify the images into categories, if two images are in the same categories (or close in a category), you can think of them as similar.
You can use the deep conventional neural networks for imagenet such as inception model. The inception model outputs a probability map for 1000 classes (which is a vector whose values sum to 1). You can calculate the distance of vectors of two images to get their similarity.
On the same page of the inception model, you will also find the instructions to retrain a model: https://github.com/tensorflow/models/tree/master/inception#how-to-fine-tune-a-pre-trained-model-on-a-new-task

Training DeepBelief Network to recognize multiple categories?

The learning example of the DeepBelief framework demonstrates how to train a neural network to recognize one object category. The method used for training jpcnn_train() does not have a category label parameter.
However, in the DeepBelief simple example, the given neural network can categorize multiple object categories. Is there a way to do that kind of training through DeepBelief? Or should I look in to Caffe and use that instead as DeepBelief is based on Caffe?
Based on their documentation, in particular on a docs for functions jpcnn_train and jpcnn_predict, it does not appear to support multiclass classification for custom labels out of the box. It does seem to support multiclass classification for ImageNet labels.
However, you can train multiple predictors (here's how to train one), one per your custom class, and then choose the class for which the corresponding predictor outputs the highest value.

Multi-label prediction using LIBLINEAR

I am using LIBLINEAR and i need to know whether Multi-Label Prediction in windows is possible or not.I tried google but no luck
I want the output to be produced the following way
I train some 10 documents with three class labels 1,2,3 and now when i feed a test document to the classifier and if the document belongs to label 1 and 2 then it should produce 1,2 or something else which shows that document belongs to 1 and 2 both the class labels
I want an example in windows
Thanks
By default neither libSvm nor LibLinear supports multiclass classification.
You need to perform a One against all approach.
You can find help on the libsvm page which provides different tools for multi-label classification that are based on LIBSVM or LIBLINEAR

Resources