How to send a memory command to memory controller - memory

According to the DDR3 document [1], the memory module has multiple modes, which is defined by the memory controller's Mode Register. The mode register, such as MR0, can be set by the Mode Register Set (MRS) command.
My question is:
How should I send the MRS command (in Linux) in order to change the memory mode?
It does not seem to be a CPU instruction that I can just use in assembly.
[1] https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/2gb_ddr3_sdram.pdf

Related

Operating Systems: Processes, Pagination and Memory Allocation doubts

I have several doubts about processes and memory management. List the main. I'm slowly trying to solve them by myself but I would still like some help from you experts =).
I understood that the data structures associated with a process are more or less these:
text, data, stack, kernel stack, heap, PCB.
If the process is created but the LTS decides to send it to secondary memory, are all the data structures copied for example on SSD or maybe just text and data (and PCB in kernel space)?
Pagination allows you to allocate processes in a non-contiguous way:
How does the kernel know if the process is trying to access an illegal memory area? After not finding the index on the page table, does the kernel realize that it is not even in virtual memory (secondary memory)? If so, is an interrupt (or exception) thrown? Is it handled immediately or later (maybe there was a process switch)?
If the processes are allocated non-contiguously, how does the kernel realize that there has been a stack overflow since the stack typically grows down and the heap up? Perhaps the kernel uses virtual addresses in PCBs as memory pointers that are contiguous for each process so at each function call it checks if the VIRTUAL pointer to the top of the stack has touched the heap?
How do programs generate their internal addresses? For example, in the case of virtual memory, everyone assumes starting from the address 0x0000 ... up to the address 0xffffff ... and is it then up to the kernel to proceed with the mapping?
How did the processes end? Is the system call exit called both in case of normal termination (finished last instruction) and in case of killing (by the parent process, kernel, etc.)? Does the process itself enter kernel mode and free up its associated memory?
Kernel schedulers (LTS, MTS, STS) when are they invoked? From what I understand there are three types of kernels:
separate kernel, below all processes.
the kernel runs inside the processes (they only change modes) but there are "process switching functions".
the kernel itself is based on processes but still everything is based on process switching functions.
I guess the number of pages allocated the text and data depend on the "length" of the code and the "global" data. On the other hand, is the number of pages allocated per heap and stack variable for each process? For example I remember that the JVM allows you to change the size of the stack.
When a running process wants to write n bytes in memory, does the kernel try to fill a page already dedicated to it and a new one is created for the remaining bytes (so the page table is lengthened)?
I really thank those who will help me.
Have a good day!
I think you have lots of misconceptions. Let's try to clear some of these.
If the process is created but the LTS decides to send it to secondary memory, are all the data structures copied for example on SSD or maybe just text and data (and PCB in kernel space)?
I don't know what you mean by LTS. The kernel can decide to send some pages to secondary memory but only on a page granularity. Meaning that it won't send a whole text segment nor a complete data segment but only a page or some pages to the hard-disk. Yes, the PCB is stored in kernel space and never swapped out (see here: Do Kernel pages get swapped out?).
How does the kernel know if the process is trying to access an illegal memory area? After not finding the index on the page table, does the kernel realize that it is not even in virtual memory (secondary memory)? If so, is an interrupt (or exception) thrown? Is it handled immediately or later (maybe there was a process switch)?
On x86-64, each page table entry has 12 bits reserved for flags. The first (right-most bit) is the present bit. On access to the page referenced by this entry, it tells the processor if it should raise a page-fault. If the present bit is 0, the processor raises a page-fault and calls an handler defined by the OS in the IDT (interrupt 14). Virtual memory is not secondary memory. It is not the same. Virtual memory doesn't have a physical medium to back it. It is a concept that is, yes implemented in hardware, but with logic not with a physical medium. The kernel holds a memory map of the process in the PCB. On page fault, if the access was not within this memory map, it will kill the process.
If the processes are allocated non-contiguously, how does the kernel realize that there has been a stack overflow since the stack typically grows down and the heap up? Perhaps the kernel uses virtual addresses in PCBs as memory pointers that are contiguous for each process so at each function call it checks if the VIRTUAL pointer to the top of the stack has touched the heap?
The processes are allocated contiguously in the virtual memory but not in physical memory. See my answer here for more info: Each program allocates a fixed stack size? Who defines the amount of stack memory for each application running?. I think stack overflow is checked with a page guard. The stack has a maximum size (8MB) and one page marked not present is left underneath to make sure that, if this page is accessed, the kernel is notified via a page-fault that it should kill the process. In itself, there can be no stack overflow attack in user mode because the paging mechanism already isolates different processes via the page tables. The heap has a portion of virtual memory reserved and it is very big. The heap can thus grow according to how much physical space you actually have to back it. That is the size of the swap file + RAM.
How do programs generate their internal addresses? For example, in the case of virtual memory, everyone assumes starting from the address 0x0000 ... up to the address 0xffffff ... and is it then up to the kernel to proceed with the mapping?
The programs assume an address (often 0x400000) for the base of the executable. Today, you also have ASLR where all symbols are kept in the executable and determined at load time of the executable. In practice, this is not done much (but is supported).
How did the processes end? Is the system call exit called both in case of normal termination (finished last instruction) and in case of killing (by the parent process, kernel, etc.)? Does the process itself enter kernel mode and free up its associated memory?
The kernel has a memory map for each process. When the process dies via abnormal termination, the memory map is crossed and cleared off of that process's use.
Kernel schedulers (LTS, MTS, STS) when are they invoked?
All your assumptions are wrong. The scheduler cannot be called otherwise than with a timer interrupt. The kernel isn't a process. There can be kernel threads but they are mostly created via interrupts. The kernel starts a timer at boot and, when there is a timer interrupt, the kernel calls the scheduler.
I guess the number of pages allocated the text and data depend on the "length" of the code and the "global" data. On the other hand, is the number of pages allocated per heap and stack variable for each process? For example I remember that the JVM allows you to change the size of the stack.
The heap and stack have portions of virtual memory reserved for them. The text/data segment start at 0x400000 and end wherever they need. The space reserved for them is really big in virtual memory. They are thus limited by the amount of physical memory available to back them. The JVM is another thing. The stack in JVM is not the real stack. The stack in JVM is probably heap because JVM allocates heap for all the program's needs.
When a running process wants to write n bytes in memory, does the kernel try to fill a page already dedicated to it and a new one is created for the remaining bytes (so the page table is lengthened)?
The kernel doesn't do that. On Linux, the libstdc++/libc C++/C implementation does that instead. When you allocate memory dynamically, the C++/C implementation keeps track of the allocated space so that it won't request a new page for a small allocation.
EDIT
Do compiled (and interpreted?) Programs only work with virtual addresses?
Yes they do. Everything is a virtual address once paging is enabled. Enabling paging is done via a control register set at boot by the kernel. The MMU of the processor will automatically read the page tables (among which some are cached) and will translate these virtual addresses to physical ones.
So do pointers inside PCBs also use virtual addresses?
Yes. For example, the PCB on Linux is the task_struct. It holds a field called pgd which is an unsigned long*. It will hold a virtual address and, when dereferenced, it will return the first entry of the PML4 on x86-64.
And since the virtual memory of each process is contiguous, the kernel can immediately recognize stack overflows.
The kernel doesn't recognize stack overflows. It will simply not allocate more pages to the stack then the maximum size of the stack which is a simple global variable in the Linux kernel. The stack is used with push pops. It cannot push more than 8 bytes so it is simply a matter of reserving a page guard for it to create page-faults on access.
however the scheduler is invoked from what I understand (at least in modern systems) with timer mechanisms (like round robin). It's correct?
Round-robin is not a timer mechanism. The timer is interacted with using memory mapped registers. These registers are detected using the ACPI tables at boot (see my answer here: https://cs.stackexchange.com/questions/141870/when-are-a-controllers-registers-loaded-and-ready-to-inform-an-i-o-operation/141918#141918). It works similarly to the answer I provided for USB (on the link I provided here). Round-robin is a scheduler priority scheme often called naive because it simply gives every process a time slice and executes them in order which is not currently used in the Linux kernel (I think).
I did not understand the last point. How is the allocation of new memory managed.
The allocation of new memory is done with a system call. See my answer here for more info: Who sets the RIP register when you call the clone syscall?.
The user mode process jumps into a handler for the system call by calling syscall in assembly. It jumps to an address specified at boot by the kernel in the LSTAR64 register. Then the kernel jumps to a function from assembly. This function will do the stuff the user mode process requires and return to the user mode process. This is often not done by the programmer but by the C++/C implementation (often called the standard library) that is a user mode library that is linked against dynamically.
The C++/C standard library will keep track of the memory it allocated by, itself, allocating some memory and by keeping records. Then, if you ask for a small allocation, it will use the pages it already allocated instead of requesting new ones using mmap (on Linux).

x86 protected mode memory management

I'm newibe of x86 cpu.
I read all materials about memory management of protected mode in x86.
the materials are Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A, System Programming Guide, Part 1
I believe I understand the many steps when cpu is accessing memory.
: selector register is index of segment descriptor table, and the entry of descriptor table is base of the segment, and linear address is addition of the base of the segment and 32bit offset.
But, what I'am confusing about is, it seems to me that CPU cannot know which memory address it will be access at the first time until the all steps above is finished. If CPU want to access specific memory address, It must know the selector value, and offset. But my question is how does it know ?? only information does CPU know is memory address it want to access doesn't it??
How does CPU know the input(selector value, offset) already when it only knows the output(memory address)??
... by
Microprocessor Real Time Clocks or Timer Chips,
periodic function called 'clock signal'
by Memory Controller Hub
Advanced Configuration and Power Interface (ACPI)
ROM, a non-volatile memory inside chips (RealMode Memory Map)
The Local Descriptor Table (LDT) is a memory table used in the x86 architecture in protected mode and containing memory segment descriptors: start in linear memory, size, executability, writability, access privilege, actual presence in memory, etc.
Interrupt descriptor table, is a data structure used by the x86 architecture to implement an interrupt vector table. The IDT is used by the processor to determine the correct response to interrupts and exceptions.
Intel 8259 is a Programmable Interrupt Controller (PIC) designed for the Intel 8085 and Intel 8086 microprocessors. The initial part was 8259, a later A suffix version was upward compatible and usable with the 8086 or 8088 processor. The 8259 combines multiple interrupt input sources into a single interrupt output to the host microprocessor, extending the interrupt levels available in a system beyond the one or two levels found on the processor chip
You also missing real mode
look also DOS_Protected_Mode_Interface & Virtual Control Program Interface
How timer chip control reset line of CPU ?
See also OSCILLATOR CIRCUIT WITH SIGNAL BUFFERING AND START-UP CIRCUITRYfrom Google Patents
real time clock
The CPU 'start' executing code stored in ROM on the motherboard at address FFFF0
The routine test the central hardware, search for video ROM
...
So.. is it not the CPU that 'start' because is power supply line that 'starts'
The power supply signal is sent to the motherboard, where it is received by the processor timer chip that controls the reset line to the processor.
How does the BIOS detect RAM ? See also serial presence detect, power-on self-test (POST)
BIOS is a 16-bit program running in real mode
The BIOS begins its POST when the CPU is reset. The first memory location the CPU tries to execute is known as the reset vector. In the case of a hard reboot, the northbridge will direct this code fetch (request) to the BIOS located on the system flash memory. For a warm boot, the BIOS will be located in the proper place in RAM and the northbridge will direct the reset vector call to the RAM
What is this reset vector ?
The reset vector is the default location a central processing unit will go to find the first instruction it will execute after a reset.
The reset vector is a pointer or address, where the CPU should always begin as soon as it is able to execute instructions. The address is in a section of non-volatile memory initialized to contain instructions to start the operation of the CPU, as the first step in the process of booting the system containing the CPU.
The reset vector for the 8086 processor is at physical address FFFF0h (16 bytes below 1 MB). The value of the CS register at reset is FFFFh and the value of the IP register at reset is 0000h to form the segmented address FFFFh:0000h, which maps to physical address FFFF0h.
About northbridge
A northbridge or host bridge is one of the two chips in the core logic chipset architecture on a PC motherboard, the other being the southbridge. Unlike the southbridge, northbridge is connected directly to the CPU via the front-side bus (FSB)
Sources:
"80386 Programmer's Reference Manual" (PDF). Intel. 1990. Section 10.1 Processor State After Reset
"80386 Programmer's Reference Manual" (PDF). Intel. 1990. Section 10.2.3 First Instruction,

The location of EIP and other registers in x86

I am working with x86 instructions and now I'm confused about where the x86 registers (Like EIP, ESP, etc.) are stored
For example when I use ollydbg I could see what is the actual EIP register alue and how it changes.
If they're stored in memory then where is the actual location? (For example in .data .text or .bss)
And can I change the EIP of another process manually? How?
You have a severe misconception about what a register is.
A register is actually a register, ie. a really small piece of memory in the processor that can contain the operands or can be the target of a CPU instruction. It doesn't have an address in memory - it's really adressable as the register it is.
RAM is something totally different – an x86 program can work completely without RAM, but there's no operation that doesn't work on registers. For example, to add two numbers that are somewhere in RAM, you use LOAD instructions to load these two numbers into two register, and then some ADD instruction to add one number to the other, targeting a register, and then there's some STORE instruction that takes the register value and writes it to some address in RAM.
So, there's no "process-specific" registers. Every CPU core has exactly one set of registers (some specialities like virtualization nonwithstanding), and there's mechanisms to store registers in RAM, and restore them from RAM, for example when calling a function or switching contextes.
Registers are stored in registers, not in the process's own memory.
Debuggers use a special interface provided by the OS to change registers of a running process, including EIP. In Linux, it's the ptrace(2) API.
Being able to change a process's registers from outside the process is related to how the OS saves a process's architectural state to memory for context switches.

Why gdb needs a memory map of ram and rom of the target for debugging

please can some one guide me why gdb needs a memory map of RAM and ROM of the target for debugging.
If we enable verbose console in gdb then we can see some traces clearly showing:
and also fro the ROM.
Is this memory used for code placement or for some other purpose.....please clarify me.
Thanks.
If you are talking about memory map defined with gdb's mem command, it's because gdb needs to know how to treat memory.
By default it assumes it can write to all of memory and cache all of it.
This is important for different reasons, one most common scenario being user trying to set a breakpoint. By default "software" breakpoints are used, which requires gdb to replace original instruction at address where breakpoint is set with special breakpoint instruction. If memory is read-only it can not do that, and has to use hardware breakpoints, which are limited in number or might even not be available. Having memory regions defined relieves user for having to manually select most appropriate breakpoint instruction (break/hbreak) manually, as gdb will automatically use hardware breakpoints in read-only regions.
Details are explained in this chapter of GDB manual.

What's the type of memory management when the OS booted,paging or no-paging?

When an OS is booted, what's the type of memory management ,paging or no-paging? That's is to say what is the value in the cr0 register that control the on/off of paging.I guess paging is off in the begining of kernel initialization, otherwise, all the memory access will be invalid. Paging is set during the kernel initialization,and all the maps of the kernel space must be set to be valid. Am I right?
I assume that by "when an OS is booted", you mean "when the processor is powered on". In that case, it obviously depends on the processor's architecture.
For the x86, paging is controlled by bit 31 in the CR0 register (if this bit is set, paging is enabled). From Intel's Software Developer Manual, Volume 3, Section 8.1.1. "Processor State After Reset", you can see that the value in CR0 is 0x60000010 after a reset, which means paging is disabled.
If you want to know if paging is enabled just before the kernel is started, it depends on what the bootloader does. The Multiboot specification (implemented by, for example, GRUB) dictates that paging should be disabled:
‘CR0’
Bit 31 (PG) must be cleared. Bit 0 (PE) must be set. Other bits are all undefined.
x86 CPUs start execution in the real address mode following a reset. The OS needs to first switch the CPU into the protected mode and only then enable page translation. You cannot enable it together with switching into the protected mode from the real mode (you get a #GP) nor can you enable it in the real mode. So, on the x86 the OS first runs with page translation disabled (unless it has been previously enabled by the OS bootloader, which is rare) and then enables it when it's ready (i.e. has constructed page tables and loaded CR3).

Resources