I would like to know if it is possible to vectorize (cf page 599 of this doc) operations that need a whole matrix scan, but with a lot of conditions to check concerning neighbours pixels. The goal is to make it faster, because the code is working when I use a for loop with 10 iterations, but I tried using a while loop, and it never ends. It might also be me screwing the stop condition, but I think the operations could still be faster. The operations I want to optimize are described here.
Here is the code that I want to optimize:
while (stopCond>0)
stopCond = 0;
ap1 = 0;
bp1 = 0;
tabPixel = [];
for x=2:NL-1
for y= 2:NC-1
p1 = imgSeuil(x,y); %current pixel
p2 = imgSeuil(x-1, y); %pixel neighbours
p3 = imgSeuil(x-1, y+1);
p4 = imgSeuil(x, y+1);
p5 = imgSeuil(x+1, y+1);
p6 = imgSeuil(x+1, y);
p7 = imgSeuil(x+1, y-1);
p8 = imgSeuil(x, y-1);
p9 = imgSeuil(x-1, y-1);
tabNeighbour = [p2, p3, p4, p5, p6, p7, p8, p9];
tmpTabl = diff([tabNeighbour, p2]);
tmpTabl = max(tmpTabl, 0);
ap1 = sum(tmpTabl);
bp1 = sum(tabNeighbour);
%%%--------Can I vectorize ops with below conditions--------
if((p1==1)&&(bp1>=2)&&(bp1<=6)&&(ap1==1)&&
((p2==0)||(p4==0)||(p6==0))&&
((p4==0)||(p6==0)||(p8==0)))
%%%adding indexes of current pxl matching these conditions to then change their value when loop is over
tabPixel = [tabPixel, [x; y]];
stopCond += 1;
endif
endfor
endfor
for i=2:columns(tabPixel)
imgSeuil(tabPixel(1, i), tabPixel(2, i)) = 0;
endfor
I also read that using bolean indexing is encouraged, and I would like to know if those changes would significantly improve exec time.
Here is the whole code if you want to run it :
clear all;
close all;
img=imread("/home/redouane/Documents/L3/S6/TIA/TD/ED_3_6_originale.png");
imshow(img);
colorbar();
sizeImg = size(img);
NL=sizeImg(1,1);
NC=sizeImg(1,2);
tab=zeros(2,256); %tab de niveaux de gris
tab(1,1:256)=0:255;
%remplissage tab niveaux de gris
%et affichage de l'histogramme
for y=1:NL
for x= 1:NC
val=img(y,x);
tab(2,val+1)=tab(2,val+1)+1;
end
end
ticktab=zeros(1,25);
for i=1:25
ticktab(1, i)=10*i;
end
figure(2);
plot(tab(1, 1:256),tab(2, 1:256));
set(gca,'XTick',ticktab(1, 1:25));
xlim([0, 255]);
%seuillage de l'img
figure(3);
imgSeuil=img;
for y=1:NL
for x= 1:NC
val=imgSeuil(y,x);
if(val<30)
imgSeuil(y,x)=0;
else
imgSeuil(y,x)=255;
end
end
end
imgSeuil=~imgSeuil;%inversion pour lignes blanches
imshow(imgSeuil);
%squelettisation: cf Zhang Suen algorithm sur rosetta code
%%%--------------
stopCond = 1;
while (stopCond>0)
stopCond = 0;
ap1 = 0;
bp1 = 0;
tabPixel = [];
for x=2:NL-1
for y= 2:NC-1
p1 = imgSeuil(x,y); %les voisins du pixel
p2 = imgSeuil(x-1, y);
p3 = imgSeuil(x-1, y+1);
p4 = imgSeuil(x, y+1);
p5 = imgSeuil(x+1, y+1);
p6 = imgSeuil(x+1, y);
p7 = imgSeuil(x+1, y-1);
p8 = imgSeuil(x, y-1);
p9 = imgSeuil(x-1, y-1);
tabNeighbour = [p2, p3, p4, p5, p6, p7, p8, p9];
tmpTabl = diff([tabNeighbour, p2]);
tmpTabl = max(tmpTabl, 0);
ap1 = sum(tmpTabl);
bp1 = sum(tabNeighbour);
if((p1==1)&&(bp1>=2)&&(bp1<=6)&&(ap1==1)&&
((p2==0)||(p4==0)||(p6==0))&&
((p4==0)||(p6==0)||(p8==0)))
tabPixel = [tabPixel, [x; y]];
stopCond += 1;
endif
endfor
endfor
for i=2:columns(tabPixel)
imgSeuil(tabPixel(1, i), tabPixel(2, i)) = 0;
endfor
ap1 = 0;
bp1 = 0;
tabPixel = [];
for x=2:NL-1
for y= 2:NC-1
p1 = imgSeuil(x,y);
p2 = imgSeuil(x-1, y);
p3 = imgSeuil(x-1, y+1);
p4 = imgSeuil(x, y+1);
p5 = imgSeuil(x+1, y+1);
p6 = imgSeuil(x+1, y);
p7 = imgSeuil(x+1, y-1);
p8 = imgSeuil(x, y-1);
p9 = imgSeuil(x-1, y-1);
tabNeighbour = [p2, p3, p4, p5, p6, p7, p8, p9];
ap1 = sum(diff([tabNeighbour, p2]));
bp1=sum(tabNeighbour);
if((p1==1)&&(bp1>=2)&&(bp1<=6)&&(ap1==1)&&
((p2==0)||(p4==0)||(p8==0))&&
((p2==0)||(p6==0)||(p8==0)))
tabPixel=[tabPixel, x; y];
stopCond += 1;
endif
endfor
endfor
for i=1:columns(tabPixel)
imgSeuil(tabPixel(1, i), tabPixel(2, i))=0;
endfor
endwhile
figure(4);
imshow(imgSeuil);
%%%-------------
##tabSquel=zeros(1,10);
##hold on;
##for y=2:NL-1
## for x= 2:NC-1
## % on utilise ces valeurs pour ne pas acceder aux bords de l'image
## %Pixel1 (P1) correspond à imgSeuil(y,x), c'est le pixel du milieu et on etudie ses voisins
## A=0;%nombre de transi de 0 à 1
## B=0;%nombre de voisins
##
## tabSquel(1,2)=imgSeuil(y,x);%p1
## tabSquel(1,2)=imgSeuil(y-1,x);%p2
## tabSquel(1,3)=imgSeuil(y-1,x+1);%p3
## tabSquel(1,4)=imgSeuil(y,x+1);%p4
## tabSquel(1,5)=imgSeuil(y+1,x+1);%p5
## tabSquel(1,6)=imgSeuil(y+1,x);%p6
## tabSquel(1,7)=imgSeuil(y+1,x-1);%p7
## tabSquel(1,8)=imgSeuil(y,x-1);%p8
## tabSquel(1,9)=imgSeuil(y-1,x-1);%p9
## tabSquel(1,10)=imgSeuil(y-1,x);
##
##
##sum = (0.5*(abs(tabSquel(1,6)-tabSquel(1,1)) + abs(tabSquel(1,7)-tabSquel(1,6)) + abs(tabSquel(1,8)-tabSquel(1,7)) + abs(tabSquel(1,9)-tabSquel(1,8)) + abs(tabSquel(1,2)-tabSquel(1,9)) + abs(tabSquel(1,3)-tabSquel(1,2)) + abs(tabSquel(1,4)-tabSquel(1,3)) + abs(tabSquel(1,5)-tabSquel(1,4))));
## if(sum==3)
## plot(y,x, "ro-");
## end
## end
##end
%imshow(imgSeuil);
I decided to try out the idea of generating a lookup table for each of the 256 possible neighbor combinations. Given a kernel:
encoding_kernel =
1 128 64
2 0 32
4 8 16
we can use filter2 to encode each neighborhood of 8 pixels to an integer in the range 0..255.
Now we just need to determine which bit combinations satisfy the conditions. You'll notice that P1 is multiplied by 0 in the kernel. We'll just use the thresholded image directly to get the value of P1. I've only coded the LUT for Step 1 in the algorithm, but Step 2 is virtually identical.
% generate Step 1 lookup table for encoded neighborhood of P1
%
% encoding_kernel
% 1 128 64
% 2 0 32
% 4 8 16
LUT_Step1 = ones(256, 1);
% generate binary values for keys 0..255
% pixel ordering is: [P2 P3 P4 P5 P6 P7 P8 P9]
binary_keys = dec2bin(0:255, 8)-'0'; % -'0' makes the array numeric
% LUT = LUT AND (2 <= B(P1) <= 6)
B_P1 = sum(binary_keys, 2);
LUT_Step1 = LUT_Step1 & (2 <= B_P1) & (B_P1 <= 6);
% Generate A(P1) by finding the transitions from 0 to 1
% which corresponds to a value of 1 in the diff
A_P1 = sum(diff([binary_keys, binary_keys(:,1)], [], 2) == 1, 2) == 1;
LUT_Step1 = LUT_Step1 & (A_P1 == 1);
% At least one of P2 and P4 and P6 is white (0)
LUT_Step1 = LUT_Step1 & ~all(binary_keys(:,[1,3,5]), 2);
% At least one of P4 and P6 and P8 is white (0)
LUT_Step1 = LUT_Step1 & ~all(binary_keys(:,[3,5,7]), 2);
I haven't manually verified all of the values in the LUT, but from a spot check it seems to be correct. On my machine, a 3GHz Core i5, generating the table took about 0.7-0.8 msec. You could, of course, hardcode the resulting table in your script if you wished.
Once you have the lookup table and the kernel, checking the conditions is pretty easy. Just encode the current image, and then look up the encoded value in the table and if it's 1, then the image should be 0 at that location. (We don't really need to make sure that the image is 1 (black) before applying the other conditions, because changing 0 to 0 doesn't change the outcome.)
clear all;
close all;
% generate the lookup table
zs_lookup_table;
img=imread("https://i.stack.imgur.com/ejNSg.png");
imshow(img);
colorbar();
% threshold img
figure(2)
imgSeuil = img < 30;
imshow(imgSeuil);
encoding_kernel = [
1 128 64
2 0 32
4 8 16
];
% use "valid" in filter2 to ensure each pixel has 8 neighbors
% valid region of image is 1 pixel smaller on each side,
% so we'll need to adjust when we recalculate imgSeuil
encoded_img = filter2(encoding_kernel, imgSeuil, "valid");
% use lookup table to determine which pixels satisfy conditions 1-4
conds1_4 = false(size(imgSeuil));
conds1_4(2:end-1, 2:end-1) = LUT_Step1(encoded_img+1); % convert range to 1..256
imgSeuil(conds1_4) = 0; % no need to explicitly check for pixel == 1
figure(3)
imshow(imgSeuil);
The timings for each pass through Step 1 varied a bit more then generating the table, probably because I updated the image between iterations and there were fewer pixels changing in later iterations. Each pass took between 0.7 and 1.7 msec. Again, I didn't code Step 2 and I didn't check for changes between iterations, but adding it all together you should be able to reach equilibrium in well under a second.
I was searching for a pure Lua 5.1 adaptation for SHA512 and yielded no results anywhere I went. I found a similar question where someone tried to convert the SHA256 adaptation into SHA512 (except he was using Lua 5.3):
Adaptation of SHA2 512 gives incorrect results
Basically I couldn't use bitwise operators (not implemented in Lua 5.1) so I had to write my own implementations of them.
This is my code:
local MOD = 2^64;
local MODM = MOD-1;
local function memoize(f)
local mt = {}
local t = setmetatable({}, mt)
function mt:__index(k)
local v = f(k)
t[k] = v
return v
end
return t
end
local function make_bitop_uncached(t, m)
local function bitop(a, b)
local res,p = 0,1
while a ~= 0 and b ~= 0 do
local am, bm = a % m, b % m
res = res + t[am][bm] * p
a = (a - am) / m
b = (b - bm) / m
p = p*m
end
res = res + (a + b) * p
return res
end
return bitop
end
local function make_bitop(t)
local op1 = make_bitop_uncached(t,2^1)
local op2 = memoize(function(a) return memoize(function(b) return op1(a, b)
end) end)
return make_bitop_uncached(op2, 2 ^ (t.n or 1))
end
local bxor1 = make_bitop({[0] = {[0] = 0,[1] = 1}, [1] = {[0] = 1, [1] = 0}, n = 4})
local function bxor(a, b, c, ...)
local z = nil
if b then
a = a % MOD
b = b % MOD
z = bxor1(a, b)
if c then z = bxor(z, c, ...) end
return z
elseif a then return a % MOD
else return 0 end
end
local function band(a, b, c, ...)
local z
if b then
a = a % MOD
b = b % MOD
z = ((a + b) - bxor1(a,b)) / 2
if c then z = bit32_band(z, c, ...) end
return z
elseif a then return a % MOD
else return MODM end
end
local function bnot(x) return (-1 - x) % MOD end
local function rshift1(a, disp)
if disp < 0 then return lshift(a,-disp) end
return math.floor(a % 2 ^ 32 / 2 ^ disp)
end
local function rshift(x, disp)
if disp > 31 or disp < -31 then return 0 end
return rshift1(x % MOD, disp)
end
local function lshift(a, disp)
if disp < 0 then return rshift(a,-disp) end
return (a * 2 ^ disp) % 2 ^ 32
end
-- UTILITY FUNCTIONS
--
-- transform a string of bytes in a string of hexadecimal digits
local function str2hexa (s)
local h = string.gsub(s, ".", function(c)
return string.format("%02x", string.byte(c))
end)
return h
end
-- transforms number 'l' into a big-endian sequence of 'n' bytes
--(coded as a string)
local function num2string(l, n)
local s = ""
for i = 1, n do
--most significant byte of l
local remainder = l % 256
s = string.char(remainder) .. s
--remove from l the bits we have already transformed
l = (l-remainder) / 256;
end
return s
end
-- transform the big-endian sequence of eight bytes starting at
-- index 'i' in 's' into a number
local function s264num (s, i)
local n = 0
for i = i, i + 7 do
n = n*256 + string.byte(s, i)
end
return n
end
--
-- MAIN SECTION
--
-- FIRST STEP: INITIALIZE HASH VALUES
--(second 32 bits of the fractional parts of the square roots of the first
9th through 16th primes 23..53)
local HH = {}
local function initH512(H)
H = {0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179}
return H
end
-- SECOND STEP: INITIALIZE ROUND CONSTANTS
--(first 80 bits of the fractional parts of the cube roots of the first 80 primes 2..409)
local k = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538,
0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe,
0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab,
0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed,
0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53,
0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373,
0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c,
0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6,
0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
}
-- THIRD STEP: PRE-PROCESSING (padding)
local function preprocess(toProcess, len)
--append a single '1' bit
--append K '0' bits, where K is the minimum number >= 0 such that L + 1 + K = 896mod1024
local extra = - (len + 17) % 128 + 8
len = num2string(8 * len, 8)
toProcess = toProcess .. "\128" .. string.rep("\0", extra) .. len
assert(#toProcess % 128 == 0)
return toProcess
end
local function rrotate(rot, n)
return rshift(rot, n) or (rshift(rot, 64 - n))
end
local function digestblock(msg, i, H)
local w = {}
for j = 1, 16 do w[j] = s264num(msg, i + (j - 1) * 8) end
for j = 17, 80 do
local v = w[j - 15]
local s0 = bxor(rrotate(v, 1), rrotate(v, 8), rshift(v, 7))
v = w[j - 2]
w[j] = w[j - 16] + s0 + w[j - 7] + bxor(rrotate(v, 19), rrotate(v, 61),
rshift(v, 6))
end
local a, b, c, d, e, f, g, h = H[1], H[2], H[3], H[4], H[5], H[6], H[7], H[8]
for i = 1, 80 do
a, b, c, d, e, f, g, h = a , b , c , d , e , f , g , h
local s0 = bxor(rrotate(a, 28), rrotate(a, 34), rrotate(a, 39))
local maj = bxor(band(a, b), band(a, c), band(b, c))
local t2 = s0 + maj
local s1 = bxor(rrotate(e, 14), rrotate(e, 18), rrotate(e, 41))
local ch = bxor (band(e, f), band(bnot(e), g))
local t1 = h + s1 + ch + k[i] + w[i]
h, g, f, e, d, c, b, a = g, f, e, d + t1, c, b, a, t1 + t2
end
H[1] = (H[1] + a)
H[2] = (H[2] + b)
H[3] = (H[3] + c)
H[4] = (H[4] + d)
H[5] = (H[5] + e)
H[6] = (H[6] + f)
H[7] = (H[7] + g)
H[8] = (H[8] + h)
end
local function finalresult512 (H)
-- Produce the final hash value:
return
str2hexa(num2string(H[1], 8)..num2string(H[2], 8)..num2string(H[3], 8)..num2string(H[4], 8)..
num2string(H[5], 8)..num2string(H[6], 8)..num2string(H[7], 8)..num2string(H[8], 8))
end
-- Returns the hash512 for the given string.
local function hash512 (msg)
msg = preprocess(msg, #msg)
local H = initH512(HH)
-- Process the message in successive 1024-bit (128 bytes) chunks:
for i = 1, #msg, 128 do
digestblock(msg, i, H)
end
return finalresult512(H)
end
print( hash512("a") )
At the end, when "a" is hashed, it turns into this:
8c14f3e36400000074d6c495c0000000fd2e4ad8b40000009a78880fb00000002c13f4fdc0000000bf50f67658000000cdf76c796c000000df8163cae8000000
Instead of the actual hash (which is this):
1F40FC92DA241694750979EE6CF582F2D5D7D28E18335DE05ABC54D0560E0F5302860C652BF08D560252AA5E74210546F369FBBBCE8C12CFC7957B2652FE9A75
So my question is, why is it wielding such different results. Is it a problem with the bitwise operator functions? I am stumped.
Here is a working implementation of SHA512 for Lua 5.1
File sha2for51.lua
-- This module contains functions to calculate SHA2 digest.
-- Supported hashes: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256
-- This is a pure-Lua module, compatible with Lua 5.1
-- It works on Lua 5.1/5.2/5.3/5.4/LuaJIT, but it doesn't use benefits of Lua versions 5.2+
-- Input data may must be provided either as a whole string or as a sequence of substrings (chunk-by-chunk).
-- Result (SHA2 digest) is a string of lowercase hex digits.
--
-- Simplest usage example:
-- local your_hash = require("sha2for51").sha512("your string")
-- See file "sha2for51_test.lua" for more examples.
local unpack, table_concat, byte, char, string_rep, sub, string_format, floor, ceil, min, max =
table.unpack or unpack, table.concat, string.byte, string.char, string.rep, string.sub, string.format, math.floor, math.ceil, math.min, math.max
--------------------------------------------------------------------------------
-- BASIC BITWISE FUNCTIONS
--------------------------------------------------------------------------------
-- 32-bit bitwise functions
local AND, OR, XOR, SHL, SHR, ROL, ROR, HEX
-- Only low 32 bits of function arguments matter, high bits are ignored
-- The result of all functions (except HEX) is an integer (pair of integers) inside range 0..(2^32-1)
function SHL(x, n)
return (x * 2^n) % 4294967296
end
function SHR(x, n)
x = x % 4294967296 / 2^n
return x - x % 1
end
function ROL(x, n)
x = x % 4294967296 * 2^n
local r = x % 4294967296
return r + (x - r) / 4294967296
end
function ROR(x, n)
x = x % 4294967296 / 2^n
local r = x % 1
return r * 4294967296 + (x - r)
end
local AND_of_two_bytes = {} -- look-up table (256*256 entries)
for idx = 0, 65535 do
local x = idx % 256
local y = (idx - x) / 256
local res = 0
local w = 1
while x * y ~= 0 do
local rx = x % 2
local ry = y % 2
res = res + rx * ry * w
x = (x - rx) / 2
y = (y - ry) / 2
w = w * 2
end
AND_of_two_bytes[idx] = res
end
local function and_or_xor(x, y, operation)
-- operation: nil = AND, 1 = OR, 2 = XOR
local x0 = x % 4294967296
local y0 = y % 4294967296
local rx = x0 % 256
local ry = y0 % 256
local res = AND_of_two_bytes[rx + ry * 256]
x = x0 - rx
y = (y0 - ry) / 256
rx = x % 65536
ry = y % 256
res = res + AND_of_two_bytes[rx + ry] * 256
x = (x - rx) / 256
y = (y - ry) / 256
rx = x % 65536 + y % 256
res = res + AND_of_two_bytes[rx] * 65536
res = res + AND_of_two_bytes[(x + y - rx) / 256] * 16777216
if operation then
res = x0 + y0 - operation * res
end
return res
end
function AND(x, y)
return and_or_xor(x, y)
end
function OR(x, y)
return and_or_xor(x, y, 1)
end
function XOR(x, y, z) -- 2 or 3 arguments
if z then
y = and_or_xor(y, z, 2)
end
return and_or_xor(x, y, 2)
end
function HEX(x)
return string_format("%08x", x % 4294967296)
end
-- Arrays of SHA2 "magic numbers"
local sha2_K_lo, sha2_K_hi, sha2_H_lo, sha2_H_hi = {}, {}, {}, {}
local sha2_H_ext256 = {[224] = {}, [256] = sha2_H_hi}
local sha2_H_ext512_lo, sha2_H_ext512_hi = {[384] = {}, [512] = sha2_H_lo}, {[384] = {}, [512] = sha2_H_hi}
local common_W = {} -- a temporary table shared between all calculations
local function sha256_feed_64(H, K, str, W, offs, size)
-- offs >= 0, size >= 0, size is multiple of 64
for pos = offs, size + offs - 1, 64 do
for j = 1, 16 do
pos = pos + 4
local a, b, c, d = byte(str, pos - 3, pos)
W[j] = ((a * 256 + b) * 256 + c) * 256 + d
end
for j = 17, 64 do
local a, b = W[j-15], W[j-2]
W[j] = XOR(ROR(a, 7), ROL(a, 14), SHR(a, 3)) + XOR(ROL(b, 15), ROL(b, 13), SHR(b, 10)) + W[j-7] + W[j-16]
end
local a, b, c, d, e, f, g, h, z = H[1], H[2], H[3], H[4], H[5], H[6], H[7], H[8]
for j = 1, 64 do
z = XOR(ROR(e, 6), ROR(e, 11), ROL(e, 7)) + AND(e, f) + AND(-1-e, g) + h + K[j] + W[j]
h = g
g = f
f = e
e = z + d
d = c
c = b
b = a
a = z + AND(d, c) + AND(a, XOR(d, c)) + XOR(ROR(a, 2), ROR(a, 13), ROL(a, 10))
end
H[1], H[2], H[3], H[4] = (a + H[1]) % 4294967296, (b + H[2]) % 4294967296, (c + H[3]) % 4294967296, (d + H[4]) % 4294967296
H[5], H[6], H[7], H[8] = (e + H[5]) % 4294967296, (f + H[6]) % 4294967296, (g + H[7]) % 4294967296, (h + H[8]) % 4294967296
end
end
local function sha512_feed_128(H_lo, H_hi, K_lo, K_hi, str, W, offs, size)
-- offs >= 0, size >= 0, size is multiple of 128
-- W1_hi, W1_lo, W2_hi, W2_lo, ... Wk_hi = W[2*k-1], Wk_lo = W[2*k]
for pos = offs, size + offs - 1, 128 do
for j = 1, 32 do
pos = pos + 4
local a, b, c, d = byte(str, pos - 3, pos)
W[j] = ((a * 256 + b) * 256 + c) * 256 + d
end
local tmp1, tmp2
for jj = 17 * 2, 80 * 2, 2 do
local a_lo, a_hi, b_lo, b_hi = W[jj-30], W[jj-31], W[jj-4], W[jj-5]
tmp1 = XOR(SHR(a_lo, 1) + SHL(a_hi, 31), SHR(a_lo, 8) + SHL(a_hi, 24), SHR(a_lo, 7) + SHL(a_hi, 25)) + XOR(SHR(b_lo, 19) + SHL(b_hi, 13), SHL(b_lo, 3) + SHR(b_hi, 29), SHR(b_lo, 6) + SHL(b_hi, 26)) + W[jj-14] + W[jj-32]
tmp2 = tmp1 % 4294967296
W[jj-1] = XOR(SHR(a_hi, 1) + SHL(a_lo, 31), SHR(a_hi, 8) + SHL(a_lo, 24), SHR(a_hi, 7)) + XOR(SHR(b_hi, 19) + SHL(b_lo, 13), SHL(b_hi, 3) + SHR(b_lo, 29), SHR(b_hi, 6)) + W[jj-15] + W[jj-33] + (tmp1 - tmp2) / 4294967296
W[jj] = tmp2
end
local a_lo, b_lo, c_lo, d_lo, e_lo, f_lo, g_lo, h_lo, z_lo = H_lo[1], H_lo[2], H_lo[3], H_lo[4], H_lo[5], H_lo[6], H_lo[7], H_lo[8]
local a_hi, b_hi, c_hi, d_hi, e_hi, f_hi, g_hi, h_hi, z_hi = H_hi[1], H_hi[2], H_hi[3], H_hi[4], H_hi[5], H_hi[6], H_hi[7], H_hi[8]
for j = 1, 80 do
local jj = 2 * j
tmp1 = XOR(SHR(e_lo, 14) + SHL(e_hi, 18), SHR(e_lo, 18) + SHL(e_hi, 14), SHL(e_lo, 23) + SHR(e_hi, 9)) + AND(e_lo, f_lo) + AND(-1-e_lo, g_lo) + h_lo + K_lo[j] + W[jj]
z_lo = tmp1 % 4294967296
z_hi = XOR(SHR(e_hi, 14) + SHL(e_lo, 18), SHR(e_hi, 18) + SHL(e_lo, 14), SHL(e_hi, 23) + SHR(e_lo, 9)) + AND(e_hi, f_hi) + AND(-1-e_hi, g_hi) + h_hi + K_hi[j] + W[jj-1] + (tmp1 - z_lo) / 4294967296
h_lo = g_lo
h_hi = g_hi
g_lo = f_lo
g_hi = f_hi
f_lo = e_lo
f_hi = e_hi
tmp1 = z_lo + d_lo
e_lo = tmp1 % 4294967296
e_hi = z_hi + d_hi + (tmp1 - e_lo) / 4294967296
d_lo = c_lo
d_hi = c_hi
c_lo = b_lo
c_hi = b_hi
b_lo = a_lo
b_hi = a_hi
tmp1 = z_lo + AND(d_lo, c_lo) + AND(b_lo, XOR(d_lo, c_lo)) + XOR(SHR(b_lo, 28) + SHL(b_hi, 4), SHL(b_lo, 30) + SHR(b_hi, 2), SHL(b_lo, 25) + SHR(b_hi, 7))
a_lo = tmp1 % 4294967296
a_hi = z_hi + (AND(d_hi, c_hi) + AND(b_hi, XOR(d_hi, c_hi))) + XOR(SHR(b_hi, 28) + SHL(b_lo, 4), SHL(b_hi, 30) + SHR(b_lo, 2), SHL(b_hi, 25) + SHR(b_lo, 7)) + (tmp1 - a_lo) / 4294967296
end
tmp1 = H_lo[1] + a_lo
tmp2 = tmp1 % 4294967296
H_lo[1], H_hi[1] = tmp2, (H_hi[1] + a_hi + (tmp1 - tmp2) / 4294967296) % 4294967296
tmp1 = H_lo[2] + b_lo
tmp2 = tmp1 % 4294967296
H_lo[2], H_hi[2] = tmp2, (H_hi[2] + b_hi + (tmp1 - tmp2) / 4294967296) % 4294967296
tmp1 = H_lo[3] + c_lo
tmp2 = tmp1 % 4294967296
H_lo[3], H_hi[3] = tmp2, (H_hi[3] + c_hi + (tmp1 - tmp2) / 4294967296) % 4294967296
tmp1 = H_lo[4] + d_lo
tmp2 = tmp1 % 4294967296
H_lo[4], H_hi[4] = tmp2, (H_hi[4] + d_hi + (tmp1 - tmp2) / 4294967296) % 4294967296
tmp1 = H_lo[5] + e_lo
tmp2 = tmp1 % 4294967296
H_lo[5], H_hi[5] = tmp2, (H_hi[5] + e_hi + (tmp1 - tmp2) / 4294967296) % 4294967296
tmp1 = H_lo[6] + f_lo
tmp2 = tmp1 % 4294967296
H_lo[6], H_hi[6] = tmp2, (H_hi[6] + f_hi + (tmp1 - tmp2) / 4294967296) % 4294967296
tmp1 = H_lo[7] + g_lo
tmp2 = tmp1 % 4294967296
H_lo[7], H_hi[7] = tmp2, (H_hi[7] + g_hi + (tmp1 - tmp2) / 4294967296) % 4294967296
tmp1 = H_lo[8] + h_lo
tmp2 = tmp1 % 4294967296
H_lo[8], H_hi[8] = tmp2, (H_hi[8] + h_hi + (tmp1 - tmp2) / 4294967296) % 4294967296
end
end
--------------------------------------------------------------------------------
-- CALCULATING THE MAGIC NUMBERS (roots of primes)
--------------------------------------------------------------------------------
do
local function mul(src1, src2, factor, result_length)
-- Long arithmetic multiplication: src1 * src2 * factor
-- src1, src2 - long integers (arrays of digits in base 2^24)
-- factor - short integer
local result = {}
local carry = 0
local value = 0.0
local weight = 1.0
for j = 1, result_length do
local prod = 0
for k = max(1, j + 1 - #src2), min(j, #src1) do
prod = prod + src1[k] * src2[j + 1 - k]
end
carry = carry + prod * factor
local digit = carry % 16777216
result[j] = digit
carry = floor(carry / 16777216)
value = value + digit * weight
weight = weight * 2^24
end
return
result, -- long integer
value -- and its floating point approximation
end
local idx, step, p, one = 0, {4, 1, 2, -2, 2}, 4, {1}
local sqrt_hi, sqrt_lo, idx_disp = sha2_H_hi, sha2_H_lo, 0
repeat
p = p + step[p % 6]
local d = 1
repeat
d = d + step[d % 6]
if d * d > p then
idx = idx + 1
local root = p^(1/3)
local R = mul({floor(root * 2^40)}, one, 1, 2)
local _, delta = mul(R, mul(R, R, 1, 4), -1, 4)
local hi = R[2] % 65536 * 65536 + floor(R[1] / 256)
local lo = R[1] % 256 * 16777216 + floor(delta * (2^-56 / 3) * root / p)
sha2_K_hi[idx], sha2_K_lo[idx] = hi, lo
if idx < 17 then
root = p^(1/2)
R = mul({floor(root * 2^40)}, one, 1, 2)
_, delta = mul(R, R, -1, 2)
hi = R[2] % 65536 * 65536 + floor(R[1] / 256)
lo = R[1] % 256 * 16777216 + floor(delta * 2^-17 / root)
sha2_H_ext256[224][idx + idx_disp] = lo
sqrt_hi[idx + idx_disp], sqrt_lo[idx + idx_disp] = hi, lo
if idx == 8 then
sqrt_hi, sqrt_lo, idx_disp = sha2_H_ext512_hi[384], sha2_H_ext512_lo[384], -8
end
end
break
end
until p % d == 0
until idx > 79
end
-- Calculating IV for SHA512/224 and SHA512/256
for width = 224, 256, 32 do
local H_lo, H_hi = {}, {}
for j = 1, 8 do
H_lo[j] = XOR(sha2_H_lo[j], 0xa5a5a5a5)
H_hi[j] = XOR(sha2_H_hi[j], 0xa5a5a5a5)
end
sha512_feed_128(H_lo, H_hi, sha2_K_lo, sha2_K_hi, "SHA-512/"..tonumber(width).."\128"..string_rep("\0", 115).."\88", common_W, 0, 128)
sha2_H_ext512_lo[width] = H_lo
sha2_H_ext512_hi[width] = H_hi
end
--------------------------------------------------------------------------------
-- FINAL FUNCTIONS
--------------------------------------------------------------------------------
local function sha256ext(width, text)
-- Create an instance (private objects for current calculation)
local H, length, tail = {unpack(sha2_H_ext256[width])}, 0, ""
local function partial(text_part)
if text_part then
if tail then
length = length + #text_part
local offs = 0
if tail ~= "" and #tail + #text_part >= 64 then
offs = 64 - #tail
sha256_feed_64(H, sha2_K_hi, tail..sub(text_part, 1, offs), common_W, 0, 64)
tail = ""
end
local size = #text_part - offs
local size_tail = size % 64
sha256_feed_64(H, sha2_K_hi, text_part, common_W, offs, size - size_tail)
tail = tail..sub(text_part, #text_part + 1 - size_tail)
return partial
else
error("Adding more chunks is not allowed after asking for final result", 2)
end
else
if tail then
local final_blocks = {tail, "\128", string_rep("\0", (-9 - length) % 64 + 1)}
tail = nil
-- Assuming user data length is shorter than 2^53 bytes
-- Anyway, it looks very unrealistic that one would spend enough time to process a 2^53 bytes of data by using this Lua script :-)
-- 2^53 bytes = 2^56 bits, so "bit-counter" fits in 7 bytes
length = length * (8 / 256^7) -- convert "byte-counter" to "bit-counter" and move floating point to the left
for j = 4, 10 do
length = length % 1 * 256
final_blocks[j] = char(floor(length))
end
final_blocks = table_concat(final_blocks)
sha256_feed_64(H, sha2_K_hi, final_blocks, common_W, 0, #final_blocks)
local max_reg = width / 32
for j = 1, max_reg do
H[j] = HEX(H[j])
end
H = table_concat(H, "", 1, max_reg)
end
return H
end
end
if text then
-- Actually perform calculations and return the SHA256 digest of a message
return partial(text)()
else
-- Return function for partial chunk loading
-- User should feed every chunks of input data as single argument to this function and receive SHA256 digest by invoking this function without an argument
return partial
end
end
local function sha512ext(width, text)
-- Create an instance (private objects for current calculation)
local length, tail, H_lo, H_hi = 0, "", {unpack(sha2_H_ext512_lo[width])}, {unpack(sha2_H_ext512_hi[width])}
local function partial(text_part)
if text_part then
if tail then
length = length + #text_part
local offs = 0
if tail ~= "" and #tail + #text_part >= 128 then
offs = 128 - #tail
sha512_feed_128(H_lo, H_hi, sha2_K_lo, sha2_K_hi, tail..sub(text_part, 1, offs), common_W, 0, 128)
tail = ""
end
local size = #text_part - offs
local size_tail = size % 128
sha512_feed_128(H_lo, H_hi, sha2_K_lo, sha2_K_hi, text_part, common_W, offs, size - size_tail)
tail = tail..sub(text_part, #text_part + 1 - size_tail)
return partial
else
error("Adding more chunks is not allowed after asking for final result", 2)
end
else
if tail then
local final_blocks = {tail, "\128", string_rep("\0", (-17-length) % 128 + 9)}
tail = nil
-- Assuming user data length is shorter than 2^53 bytes
-- 2^53 bytes = 2^56 bits, so "bit-counter" fits in 7 bytes
length = length * (8 / 256^7) -- convert "byte-counter" to "bit-counter" and move floating point to the left
for j = 4, 10 do
length = length % 1 * 256
final_blocks[j] = char(floor(length))
end
final_blocks = table_concat(final_blocks)
sha512_feed_128(H_lo, H_hi, sha2_K_lo, sha2_K_hi, final_blocks, common_W, 0, #final_blocks)
local max_reg = ceil(width / 64)
for j = 1, max_reg do
H_lo[j] = HEX(H_hi[j])..HEX(H_lo[j])
end
H_hi = nil
H_lo = table_concat(H_lo, "", 1, max_reg):sub(1, width / 4)
end
return H_lo
end
end
if text then
-- Actually perform calculations and return the SHA256 digest of a message
return partial(text)()
else
-- Return function for partial chunk loading
-- User should feed every chunks of input data as single argument to this function and receive SHA256 digest by invoking this function without an argument
return partial
end
end
local sha2for51 = {
sha224 = function (text) return sha256ext(224, text) end, -- SHA-224
sha256 = function (text) return sha256ext(256, text) end, -- SHA-256
sha384 = function (text) return sha512ext(384, text) end, -- SHA-384
sha512 = function (text) return sha512ext(512, text) end, -- SHA-512
sha512_224 = function (text) return sha512ext(224, text) end, -- SHA-512/224
sha512_256 = function (text) return sha512ext(256, text) end, -- SHA-512/256
}
return sha2for51
File sha2for51_test.lua
--------------------------------------------------------------------------------
-- TESTS
--------------------------------------------------------------------------------
local sha2 = require"sha2for51"
local function test_sha256()
local sha256 = sha2.sha256
-- some test strings
assert(sha256("The quick brown fox jumps over the lazy dog") == "d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592")
assert(sha256("The quick brown fox jumps over the lazy cog") == "e4c4d8f3bf76b692de791a173e05321150f7a345b46484fe427f6acc7ecc81be")
assert(sha256("abc") == "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad")
assert(sha256("123456") == "8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92")
assert(sha256("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") == "248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1")
assert(sha256("abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu") == "cf5b16a778af8380036ce59e7b0492370b249b11e8f07a51afac45037afee9d1")
-- chunk-by-chunk loading: sha256("string") == sha256()("st")("ri")("ng")()
local append_next_chunk = sha256() -- create a private closure for calculating digest of single string
append_next_chunk("The quick brown fox")
append_next_chunk(" jumps ")
append_next_chunk("") -- chunk may be empty string
append_next_chunk("over the lazy dog")
assert(append_next_chunk() == "d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592") -- asking for final result (invocation without an argument)
assert(append_next_chunk() == "d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592") -- you can ask the same result multiple times if needed
-- append_next_chunk("more text") will fail here: no more chunks are allowed after receiving the result, the closure is useless now, let it be GC-ed
assert(not pcall(append_next_chunk, "more text"))
-- one-liner is possible due to "append_next_chunk(chunk)" returns the function "append_next_chunk"
assert(sha256()("The quick brown fox")(" jumps ")("")("over the lazy dog")() == "d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592")
-- empty string
assert(sha256("") == "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855")
assert(sha256()() == "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855")
-- computations of different strings don't interfere with each other
local chunk_for_digits = sha256()
chunk_for_digits("123")
local chunk_for_fox = sha256()
chunk_for_fox("The quick brown fox jumps ")
chunk_for_digits("45")
chunk_for_fox("over the lazy dog")
chunk_for_digits("6")
assert(chunk_for_digits() == "8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92")
assert(chunk_for_fox() == "d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592")
-- "00...0\n"
for i, dgst in pairs{ -- from 50 to 70 zeroes
[50] = "9660acb8046abf46cf27280e61abd174ebac98ad6855e093772b78df85523129",
[51] = "31e1c552b357ace9bcb924691799a3c0d3aa10d8b428d9de28a278e3c79ecb7b",
[52] = "0be5c4bcb6f47e30c13515594dbef4faa3a6485af67c177179fee8b33cd4f2a0",
[53] = "d368c7f6038c1743bdbfe6a9c3a72d4e6916aa219ed8d559766c9e8f9845f3b8",
[54] = "7080a4aa6ff030ae152fe610a62ee29464f92afeb176474551a69d35aab154a0",
[55] = "149c1cda81fa9359c0c2a5e405ca972986f1d53e05f6282871dd1581046b3f44",
[56] = "eb2d4d41948ce546c8adff07ee97342070c5b89789f616a33efe52c7d3ec73d4",
[57] = "c831db596ccbbf248023461b1c05d3ae084bcc79bcb2626c5ec179fb34371f2a",
[58] = "1345b8a930737b1069bbf9b891ce095850f6cdba6e25874ea526a2ccb611fe46",
[59] = "380ad21e466885fae080ceeada75ac04944687e626e161c0b24e91af3eec2def",
[60] = "b9ab06fa30ef8531c5eee11651aa86f8279a245e0a3c29bf6228c59475cc610a",
[61] = "bcc187de6605d9e11a0cc6edf02b67fb651fe1779ec59438788093d8e376c07c",
[62] = "ae0b3681157b83b34de8591d2453915e40c3105ae79434e241d82d4035218e01",
[63] = "68a27b4735f6806fb5983c1805a23797aa93ea06e0ebcb6daada2ea1ab5a05af",
[64] = "827d096d92f3deeaa0e8070d79f45beb176768e57a958a1cd325f5f4b754b048",
[65] = "6c7bd8ec0fe9b4e05a2d27dd5e41a8687a9716a2e8926bdfa141266b12942ec1",
[66] = "2f4b4c41017a2ddd1cc8cd75478a82e9452e445d4242f09782535376d6f4ba50",
[67] = "b777b86e005807a446ead00986fcbf3bdd6c022524deabf017eeb3f0c30b6eed",
[68] = "777da331f60c793f582e4ca33223778218ddfd241981f15be5886171fb8301b5",
[69] = "06ed0c4cbf7d2b38de5f01eab2d2cd552d9cb87f97b714b96bb7a9d1b6117c6d",
[70] = "e82223344d5f3c024514cfbe6d478b5df98bb878f34d7a07e7b064fa7fa91946"
} do
assert(sha256(("0"):rep(i).."\n") == dgst)
end
-- "aa...a"
assert(sha256(("a"):rep(55)) == "9f4390f8d30c2dd92ec9f095b65e2b9ae9b0a925a5258e241c9f1e910f734318")
assert(sha256(("a"):rep(56)) == "b35439a4ac6f0948b6d6f9e3c6af0f5f590ce20f1bde7090ef7970686ec6738a")
-- "aa...a\n" in chunk-by-chunk mode
local next_chunk = sha256()
for i = 1, 65 do
next_chunk("a")
end
next_chunk("\n")
assert(next_chunk() == "574883a9977284a46845620eaa55c3fa8209eaa3ebffe44774b6eb2dba2cb325")
local function split_and_calculate_sha256(s, len) -- split string s in chunks of length len
local next_chunk = sha256()
for idx = 1, #s, len do
next_chunk(s:sub(idx, idx + len - 1))
end
return next_chunk()
end
-- "00...0\n00...0\n...00...0\n" (80 lines of 80 zeroes each) in chunk-by-chunk mode with different chunk lengths
local s = (("0"):rep(80).."\n"):rep(80)
assert(split_and_calculate_sha256(s, 1) == "736c7a8b17e2cfd44a3267a844db1a8a3e8988d739e3e95b8dd32678fb599139")
assert(split_and_calculate_sha256(s, 2) == "736c7a8b17e2cfd44a3267a844db1a8a3e8988d739e3e95b8dd32678fb599139")
assert(split_and_calculate_sha256(s, 7) == "736c7a8b17e2cfd44a3267a844db1a8a3e8988d739e3e95b8dd32678fb599139")
assert(split_and_calculate_sha256(s, 70) == "736c7a8b17e2cfd44a3267a844db1a8a3e8988d739e3e95b8dd32678fb599139")
end
local function test_sha512()
local sha512 = sha2.sha512
assert(sha512("abc") == "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f")
assert(sha512("abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu") ==
"8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909")
-- "aa...a"
for i, dgst in pairs{ -- from 109 to 116 letters "a"
[109] = "0cda6b04d9466bb7f3995c16732e1347f29c23a64fe0b085fadba0995644cc5aa71587423c274c10e09518310c5f866cfaceb229fabb574219f12182eb114182",
[110] = "c825949632e509824543f7eaf159fb6041722fce3c1cdcbb613b3d37ff107c519417baac32f8e74fe29d7f4823bf6886956603dca5354a6ed6e4a542e06b7d28",
[111] = "fa9121c7b32b9e01733d034cfc78cbf67f926c7ed83e82200ef86818196921760b4beff48404df811b953828274461673c68d04e297b0eb7b2b4d60fc6b566a2",
[112] = "c01d080efd492776a1c43bd23dd99d0a2e626d481e16782e75d54c2503b5dc32bd05f0f1ba33e568b88fd2d970929b719ecbb152f58f130a407c8830604b70ca",
[113] = "55ddd8ac210a6e18ba1ee055af84c966e0dbff091c43580ae1be703bdb85da31acf6948cf5bd90c55a20e5450f22fb89bd8d0085e39f85a86cc46abbca75e24d",
[114] = "5e9eb0e4b270d086e77eeaf3ce8b1cfc615031b8c463dc34f5c139786f274f22accb4d89e8f40d1a0c2acc84c4dc0f2bab390a9d9495493bd617ed004271bb64",
[115] = "eaa30f93760743ac7d0a6cb8ed5ef3b30c59097bc44d0ec337344301deba9fb92b20c488d55de415f6aaed0df4925b42894b81d2e1cde89d91ec7f6cc67262b4",
[116] = "a8bff469314a1ce0c990bb3fd539d92accb6249cc674b559bc9d3898b7a126fee597197fa42c971443470053c7d7f54b09371a59b0f7af87b1917c5347e8f8e0",
} do
assert(sha512(("a"):rep(i)) == dgst)
end
end
local function all_tests_sha2()
test_sha256()
assert(sha2.sha224"abc" == "23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7")
assert(sha2.sha224"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" == "75388b16512776cc5dba5da1fd890150b0c6455cb4f58b1952522525")
test_sha512()
assert(sha2.sha384"abc" == "cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7")
assert(sha2.sha384"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu" == "09330c33f71147e83d192fc782cd1b4753111b173b3b05d22fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039")
assert(sha2.sha512_224"abc" == "4634270f707b6a54daae7530460842e20e37ed265ceee9a43e8924aa")
assert(sha2.sha512_224"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu" == "23fec5bb94d60b23308192640b0c453335d664734fe40e7268674af9")
assert(sha2.sha512_256"abc" == "53048e2681941ef99b2e29b76b4c7dabe4c2d0c634fc6d46e0e2f13107e7af23")
assert(sha2.sha512_256"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu" == "3928e184fb8690f840da3988121d31be65cb9d3ef83ee6146feac861e19b563a")
print"All tests passed"
end
all_tests_sha2()
local function benchmark()
print("Benchmarking (calculating SHA512 of 1MByte string of letters 'a')...")
local time_intervals = {}
local length = 2^20
local part = ("a"):rep(2^12)
local N = length/#part
local result
local k = 2
for j = 1, 2*k-1 do
local clk0 = os.clock()
local x = sha2.sha512()
for j = 1, N do
x(part)
end
result = x()
time_intervals[j] = os.clock() - clk0
end
--print("Result = "..result)
-- get median time
table.sort(time_intervals)
print('CPU seconds:', time_intervals[k])
end
benchmark() -- about 15 seconds per megabyte
Find the value of R in the following circuit
This problem is solved using the following code:
R, V1, V2, Vo = Reals('R V1 V2 Vo')
I1 = V1/(R -50)
I2 = V2/(R + 10)
g = - R*(I1 + I2)
print g
equations = [Vo == g]
print equations
problem = [Vo == -2 , V1 == 1, V2 == 0.5, R != -10, R != 50, R > 0]
solve(equations + problem)
and the corresponding output is:
-R·(V1/(R - 50) + V2/(R + 10))
[Vo = -R·(V1/(R - 50) + V2/(R + 10))]
[R = 143.8986691902?, V2 = 1/2, V1 = 1, Vo = -2]
Other example: Find the value of R in the following circuit
This problem is solved using the following code:
R, Vs, Ve, R1, R2 = Reals('R Vs Ve R1 R2')
g1 = (Vs - Ve)/R1
print g1
g2 = Ve/R2
print g2
equations = [g1 == g2, R1 == 2*R - 100, R2 ==R]
print equations
problem = [Vs == 35 , Ve == 15, R > 0, R1 >0, R2 >0]
solve(equations + problem)
and the corresponding output is:
(Vs - Ve)/R1
Ve/R2
[(Vs - Ve)/R1 = Ve/R2, R1 = 2·R - 100, R2 = R]
[R = 150, Ve = 15, Vs = 35, R2 = 150, R1 = 200]
Other example:
This problem is solved using the following code:
Rf, Rg, Vo, V1, V2, R1, R2, I1, I2, V = Reals('Rf Rg Vo V1 V2 R1 R2 I1 I2 V')
equations = [V1 - V == R1*I1, V - Vo == Rf*I1,
V2 - V == R2*I2, V == Rg*I2]
print equations
problem = [V1 == 10 , V2 == 15, R1 == 100, R2 == 200,
Rf == 100, Rg ==500]
solve(equations + problem)
and the corresponding output is
[V1 - V = R1·I1, V - Vo = Rf·I1, V2 - V = R2·I2, V = Rg·I2]
[I1 = -1/140,
Vo = 80/7,
Rg = 500,
Rf = 100,
R2 = 200,
R1 = 100,
V2 = 15,
V1 = 10,
I2 = 3/140,
V = 75/7]
Other example:
Code:
Rf, Rg, Vo, V1, V2, R1, R2, I1, I2, V = Reals('Rf Rg Vo V1 V2 R1 R2 I1 I2 V')
equations = [V1 - V == R1*I1, V - Vo == Rf*I1,
V2 - V == R2*I2, V == Rg*I2, Rf == 200 + Rg]
print equations
problem = [V1 == 10 , V2 == 15, R1 == 100, R2 == 200, Vo == 20, Rg > 0, Rf >0
]
solve(equations + problem)
Output:
[V1 - V = R1·I1, V - Vo = Rf·I1, V2 - V = R2·I2, V = Rg·I2, Rf = 200 + Rg]
[I1 = -0.0113999063?,
Rg = 577.2001872658?,
Vo = 20,
R2 = 200,
R1 = 100,
V2 = 15,
V1 = 10,
I2 = 0.0193000468?,
V = 11.1399906367?,
Rf = 777.2001872658?]
Other example:
Code:
Vi, R1, I1, Va, R2, I2, R4, R3, Vo= Reals('Vi R1 I1 Va R2 I2 R4 R3 Vo')
equations = [Vi == R1*I1, -Va == R2*I1, Va == R4*I2, Va - Vo ==R3*(I1-I2)]
print equations
problem = [Vi == 1, R1 == 1000, R2 == 1000, R3 == 1000, R4 == 10]
solve(equations + problem)
Output:
[Vi = R1·I1, -Va = R2·I1, Va = R4·I2, Va - Vo = R3·(I1 - I2)]
[R4 = 10,
R3 = 1000,
R2 = 1000,
R1 = 1000,
Vi = 1,
Vo = -102,
I2 = -1/10,
Va = -1,
I1 = 1/1000]
Other example:
Code:
Vi, R1, I1, Va, R2, I2, R4, R3, Vo= Reals('Vi R1 I1 Va R2 I2 R4 R3 Vo')
equations = [Vi == R1*I1, -Va == R2*I1, Va == R4*I2, Va - Vo ==R3*(I1-I2),
R2 == R1 - 100, R3 == R1 - 200]
print equations
problem = [Vi == 1, Vo == -10, R4 == 10, R1 >0, R2 > 0, R3 >0]
solve(equations + problem)
Output:
[Vi = R1·I1, -Va = R2·I1, Va = R4·I2, Va - Vo = R3·(I1 - I2), R2 = R1 - 100, R3 = R1 - 200]
[I1 = 0.0030468970?,
R1 = 328.2027496108?,
I2 = -0.0695310291?,
R4 = 10,
Vo = -10,
Vi = 1,
R3 = 128.2027496108?,
R2 = 228.2027496108?,
Va = -0.6953102918?]
Other example:
Code:
Vi, V1, R, I1, V2, Ri, I2, R1, Vo, RF, A= Reals('Vi V1 R I1 V2 Ri I2 R1 Vo RF A')
equations = [Vi-V1 == R*I1,V1 -V2 == Ri*I2, V2 == R1*I2, V1 - Vo ==RF*(I1-I2),
Vo==A* (V2-V1)]
print equations
problem = [Vi == 1, R1 == 2000, Ri == 100, RF == 1000, R == 300, A == 100]
set_option(rational_to_decimal=True)
solve(equations + problem)
Output:
[Vi - V1 = R·I1, V1 - V2 = Ri·I2, V2 = R1·I2, V1 - Vo = RF·(I1 - I2), Vo = A·(V2 - V1)]
[I2 = 0.0001658374?,
A = 100,
R = 300,
RF = 1000,
Ri = 100,
R1 = 2000,
Vi = 1,
Vo = -1.6583747927?,
I1 = 0.0021724709?,
V1 = 0.3482587064?,
V2 = 0.3316749585?]
Other example:
Code:
Vi, V1, R, I1, V2, Ri, I2, R1, Vo, RF, A= Reals('Vi V1 R I1 V2 Ri I2 R1 Vo RF A')
equations = [Vi-V1 == R*I1,V1 -V2 == Ri*I2, V2 == R1*I2, V1 - Vo ==RF*(I1-I2),
Vo==A* (V2-V1), RF == R + 1000, Ri == R + 500, R1 == R + 1500]
print equations
problem = [Vi == 1, A == 100, Vo == -2, R >0, RF >0, R1 >0]
set_option(rational_to_decimal=True)
solve(equations + problem)
Output:
[Vi - V1 = R·I1, V1 - V2 = Ri·I2, V2 = R1·I2, V1 - Vo = RF·(I1 - I2),
Vo = A·(V2 - V1), RF = R + 1000, Ri = R + 500, R1 = R + 1500]
[I2 = 0.0000150298?,
R = 830.6885937397?,
I1 = 0.0011375745?,
Vo = -2,
A = 100,
Vi = 1,
RF = 1830.6885937397?,
V1 = 0.0550298124?,
V2 = 0.0350298124?,
R1 = 2330.6885937397?,
Ri = 1330.6885937397?]
Other example:
What value of the resistance RB will provide balance of the bridge yielding Vo = 0
Code:
V, RC, RD, I1, VB, RA,RB, I2, VA, V2, R1, I3, R2, V1, R3, R4, I4, Vo =
Reals('V RC RD I1 VB RA RB I2 VA V2 R1 I3 R2 V1 R3 R4 I4 Vo')
equations = [V == (RC+RD)*I1, VB == RD*I1, V == (RA + RB)*I2,
VA == RB*I2, VB-V2 == R1*I3, V2 == R2*I3, VA-V1 == R3*I4,
V1 - Vo == R4*I4, V2 == V1, RD == RB + 10]
print equations
problem = [Vo == 0, V == 5, R1 == 10, R2 == 12, R3 == 10, R4 == 22,
RA ==1, RC ==1, RB >0, RD >0]
set_option(rational_to_decimal=True)
solve(equations + problem)
Output:
[V = (RC + RD)·I1, VB = RD·I1, V = (RA + RB)·I2, VA = RB·I2, VB - V2 = R1·I3,
V2 = R2·I3, VA - V1 = R3·I4, V1 - Vo = R4·I4, V2 = V1, RD = RB + 10]
[I1 = 0.3626991607?,
RB = 2.7855295545?,
I2 = 1.3208191688?,
I4 = 0.1149744009?,
I3 = 0.2107864017?,
RC = 1,
RA = 1,
R4 = 22,
R3 = 10,
R2 = 12,
R1 = 10,
V = 5,
Vo = 0,
V1 = 2.5294368214?,
V2 = 2.5294368214?,
VA = 3.6791808311?,
VB = 4.6373008392?,
RD = 12.7855295545?]
Please let me know what do you think and if you know a more efficient code for these kind of problems. Many thanks.