Is it possible to create a generic type via type providers so that
[<TypeProvider>]
type SampleTypeProvider(config: TypeProviderConfig) as this =
...
//the below would be the generated type
type A<'b> () =
member this.C() : 'b = ...
member this.D() : 'b = ...
//
...
[<assembly:TypeProviderAssembly>]
do()
....
so that in the usage scenario would look something to
#r #".\bin\Debug\SampleTypeProvider.dll"
type A = SampleTypeProvider.A
type intA = A<int>
type strA = A<str>
And if that is possible - How can I approach it.
This is not possible using standard methods. I tried looking around, but could not find a canonical reference, but it is a known limitation and there have been various suggestions to lift the restriction.
Ross McKinlay has a somewhat extreme project called Mixin type provider that works around this by actually generating a file with F# source code when type provider is run (and you can then include this file in your project). This is perhaps more code-generation than type provider, but his talk about the topic is also a good explanation of some of the limitations.
How to address this very much depends on the purpose of the type provider. If you only need limited number of types, you could use something like static parameters and write A<"int"> or A<"string">. You could also mix ordinary non-provided generic types with non-generic provided types (in some clever way). But I think you need to write more about your concrete use case to get a better answer.
Related
(previously "using type provider from C#")
This should be easy to answer, and the underlying issue has be asked before, but I'm slightly confused about it, having dug into it, there's something I'm missing.
The Xml type provider in
https://fsharp.github.io/FSharp.Data/library/XmlProvider.html
is erased?
so the types in it can't be used from another assembly?
"Erasing Type Providers produce types that can only be consumed in the assembly or project they are generated from" (says the MS docs).
but if I define in one assembly this
module Xml
type Xml = FSharp.Data.XmlProvider<"""
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>""">
let foo () = Xml.Parse ("")
and in another assembly, reference the above assembly and go...
let x = Xml.foo ()
let s = x.From
this compiles...so if the MS docs are correct, the provider must be generative?
if I implement the same code in C#,
var x = Xml.foo();
var y = x.From;
then this code doesnt compiler
'XmlElement' does not contain a definition for 'From' and no accessible extension method 'From' accepting a first argument of type 'XmlElement'
which seems to imply its erased...or I need to do something else (I've included the same dependencies).
My hunch is its erased, but then how does the F# assembly compile?
(I want it to be generative to use from C# and VB).
As far as I can tell by looking at the source code, all the types provided by FSharp.Data are erased.
The XmlProvider type is defined by this line at https://github.com/fsharp/FSharp.Data/blob/master/src/Xml/XmlProvider.fs#L26
let xmlProvTy = ProvidedTypeDefinition(asm, ns, "XmlProvider", None, hideObjectMethods=true, nonNullable=true)
As you can see, the instantiation of the ProvidedTypeDefinition type does not include isErased=false.
The ProvidedTypeDefinition type has two constructors. See the signatures at https://github.com/fsprojects/FSharp.TypeProviders.SDK/blob/master/src/ProvidedTypes.fsi#L268-L275
Both constructors have an implementation including this line, which means that the provide type is erased by default:
let isErased = defaultArg isErased true
Without redesigning the XmlProvider, the only way you can consume it from C# is to wrap it in an F# class that exposes C#-friendly types. Not sure if that would result in a better design than just avoiding the type provider altogether.
Assuming by "erased" you mean being removed from the FSharp.Data Library? then XMLProvider its probably not removed from it because I just tried your code and it works in F# project (as you have also noticed).
Now about the C# project the thing is TypeProviders are a Fsharp specific thing, whatever magic F# compiler is doing to type check xml and access the From xml-node here is probably only exclusive to F#.
The type of you variable x here is FSharp.Data.Runtime.BaseTypes.XmlElement, looking at the documentation here and the source code here.
There doesn't seem to be any way of accessing the xml nodes in an OOP way. Its probably not meant to be accessed that way either. If you want to parse xml and read its nodes in C# there are plenty of other ways for that. One being XmlReader in System.Xml
I just started to study F# and accidentally wrote this binding
let List = 1
Now when I try to obtain List methods such as 'filter' I get this error
error FS0039: The field, constructor or member 'filter' is not defined.
Of course using method with full type name like Microsoft.FSharp.Collections.List.filter is still working.
I'm wondering why it is possible to use type name as identifier in F# and how I can set back name List to type List from Microsoft.FSharp.Collections.
When I tried to reassign like this
type List = Microsoft.FSharp.Collections.List<'T>
I get
Error FS0039: The type parameter 'T is not defined.
Thank you!
In F# you can redefine almost everything and shadow existing definitions. This applies to both types (well actually types have a different behavior regarding shadowing, they shadow their values as you open the namespaces) and values but not interchangeably since values and type (and also modules) can somehow coexist at the same time in the scope. The compiler will do his best to find out which one is.
You are not forced to, but it's a common good practice in F# not to use let bindings in uppercase.
Regarding your second question, you are using a type parameter in the right side which doesn't exist in the left side of the assignment, it should be:
type List<'T> = Microsoft.FSharp.Collections.List<'T>
But notice that filter doesn't belong to the type. It's rather defined in the List module.
You should just rename your let binding from List to something sensible - as Gustavo mentioned, your definition is shadowing the core List module from F# and there is no way to use List to refer both to your integer and to the module. Shadowing core functions will make your code pretty confusing. It's also a good idea to use camelCase for let bindings, but that's a matter of taste.
If you insist on shadowing List, then you won't be able to call List.filter using List.filter. If you wanted something shorter, you could define module alias:
module FsList = Microsoft.FSharp.Collections.List
Note that your attempt to do something similar with List<'T> does not do the same thing, because functions such as filter are in a module named List rather than being static members of the type. With this, you can call filter using FsList.filter.
I've been programming in F# for some years and there's an "issue" that's been bothering me for some time and I have not been able to solve. It is not a bug, I think it is a design decision, but anyway, the problem is this: is there a way to delay (maybe that's not the correct word for this) the implementation of interfaces?, that is, not implementing them in the initial definition, but later, maybe in the same file after I have implemented a module for the type. I'll explain with a simplified example:
Suppose I have the following data structure:
type 'T MyCollection =
(*type definition*)
interface IEnumerable<'T> with
member this.GetEnumerator () =
(* I don't want to implement it here
because I still don't have the module
with a toSeq function *)
If I implemented the method right there, I would have to also implement all the functions as methods of the type and then the module would be just a "proxy" for calling the methods. This way I'm creating a OO-first data structure and then creating a module (overloaded with type annotations) to allow for a functional-first usage. I would prefer to write a functional-first data structure (cleaner since the type inference can work better) and then create a OO wrapper to allow a better intellisense support for languages like C#. That approach complies with what the design guidelines for F# tells us, but the interfaces can't be implemented anywhere but in the initial definition of the type. That restriction forces me to write the whole data structure with members.
I've been looking for examples and I've found that the list implementation in FSharp.Core list does exactly what I want, but I can't do that, the compiler won't let me.
I'm almost sure that this is a design decision, maybe to avoid encouraging bad practices, I don't know, but I don't consider my wish to be a bad practice. Also I'm well aware of the linear nature of the fsharp compiler.
Please if any of you know how to do what I want, I'll be glad if you tell me. Also, if any of you know why I should not follow this approach I'll be glad to know too. There must be a reason why this is not a problem for anyone else.
Thanks in advance.
I completely agree that this is unfortunate problem. The trick that is used in the source code of 'a list in the F# Core library is to define the implementation of the interface in a type augmentation. The compiler does not complain when you add members to a type in this way, but it says that adding implementation of an interface in this way is deprecated. However, it does not prevent you from doing this. The following compiles fine for me:
open System.Collections
open System.Collections.Generic
type MyCollection<'T> =
{ Data : 'T list }
interface IEnumerable<'T>
interface IEnumerable
let getEnumerator { Data = d } =
(d :> seq<_>).GetEnumerator()
type MyCollection<'T> with
interface IEnumerable<'T> with
member this.GetEnumerator() = getEnumerator this
interface IEnumerable with
member this.GetEnumerator() = (getEnumerator this) :> _
The fact that this is deprecated is a bit unfortunate. I quite like this style and I use it when it makes sense. You can start a discussion about this on F# user voice and perhaps it could be turned back into a normal accepted feature :-)
I am trying to implement a type provider for Excel files that creates generated types. My goal is to be able to reference these types from C#.
If I create the type provider using erased types, I can reference it from F# using this syntax:
type DataTypesTest = ExcelFile<"tests\ExcelProvider.Tests\DataTypes.xlsx">
If I mark my types as generated. The above syntax produces this error:
A direct reference to the generated type 'ExcelFile' is not permitted. Instead, use a type definition, e.g. 'type TypeAlias = <path>'. This indicates that a type provider adds generated types to your assembly.
How do I reference a parameterized generated type in my F# code? The source for this type provider is available on GitHub
I believe the problem may be due to how you're constructing the type in the Type Provider, not your code at the usage site. The code to use the type provider should be identical for generated or erased type providers. I had similar errors occur when trying to get the type construction correct with my generated type providers.
In your case, your type derives from ExcelFileInternal, so you need to use BaseConstructorCall, not just the constructor logic. This should look something similar to:
// add a parameterless constructor which loads the file that was used to define the schema
let ctor = ProvidedConstructor([])
ctor.BaseConstructorCall <- fun [] -> <## ExcelFileInternal(resolvedFilename, range) ##>
providedExcelFileType.AddMember(ctor)
Note that all constructors would need this type of change.
Is there any way to open a namespace of types provided by a type provider implementation? I ask, because some of the generated type name paths are very long and ugly in code. I have used type abbreviations to alleviate this, but obviously this is a manual process. The F# open keyword does not support this. Is there another way? Update: as pointed out in the answer and comments this is wrong. You can open a type provided namespace. I had not realised I was looking at deeply nested types, not a namespace.
This is tricky - parameterized type providers (like the standard SQL providers or the F# Data providers for XML and JSON) need to put all types that they generate (representing tables, XML nodes, etc) inside the main generated type. So all types that you might want to use are hidden somewhere as nested types of the main type (with parameters specified).
This makes sense - if you use the type provider with multiple parameters, the types generated for each configuration have to be separate.
As #kvb points out, you cannot open a nested type, but you can use type aliases to make this a bit less painful. For example, using F# Data, I can define an alias R that lets me access all the generated domain types with just two additional characters:
#r #"..\packages\FSharp.Data.1.1.10\lib\net40\FSharp.Data.dll"
open FSharp.Data
type RssFeed = XmlProvider<"http://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml">
type R = RssFeed.DomainTypes
let printTitle (itm:R.Item) = printfn "%A" itm.Title