MARS - Address out of range - memory

I am writing a program in Mars MIPS Simulator that finds all the prime numbers up to 65,025 and then creates a pixel by pixel representation of them on a 256x256 bitmap display, in the form of the Ulam Spiral.
My program's data segment looks like this:
display: .word 0:65536 # allocates a memory address for each pixel, and initialises each to 0 (256 x 256)
numPixels: .word 655536 # number of pixels on 256x256 display
black: .word 0x00000000 # hex code for black
white: .word 0x00FFFFFF # hex code for white
primeArray: .word 1:65025 # array of 65025 elements initialised to '1' (1 = prime, 0 = not prime)
length: .word 65025 # length of primeArray
What I am trying to do in this data segment is to reserve:
65,536 words to correspond to each pixel
3 words to store '65,536' and the hex codes for black and white
65,025 words for integers 1 - 65,025
1 word to store the number '65,025'
in that given order.
The program works by using the Sieve of Eratosthenes to iterate through primeArray and stores the prime numbers as 1, non-primes as 0. So far, I have two functions that work fine independently:
The first that clears the bitmap display by iterating through each of the 65,536 pixels and setting each of their colours to white.
The second iterates through primeArray and stores the number of the corresponding index to 0 or 1 if it is prime or not by using the algorithm of the Sieve of Eratosthenes.
If I run each of these functions on their own, the program executes with no errors. However, if I try to execute clearDisplay followed by calcPrimes, I get the following memory error:
line 63: Runtime exception at 0x0040009c: address out of range 0x10400000
where line 63 is inside a loop that sets primeArray[i] = 0 if that element is not prime.
What is causing this error? Is the data segment large enough to store all that I am hoping to before execution?
The assignment instructions ask to include a subroutine that clears a block of memory - is this relevant to my issue?

You've got a typo in your data segment:
numPixels: .word 655536
256*256 is 65536, not 655536.

Related

Difference between absdiff and normal subtraction in OpenCV

I am currently planning on training a binary image classification model. The images I want to train on are the difference between two original pictures. In other words, for each data entry, I start out with 2 pictures, take their difference, and the label that difference as a 0 or 1. My question is what is the best way to find this difference. I know about cv2.absdiff and then normal subtraction of images - what is the most effective way to go about this?
About the data: The images I'm training on are screenshots that usually are the same but may have small differences. I found that normal subtraction seems to show the differences less than absdiff.
This is the code I use for absdiff:
diff = cv2.absdiff(img1, img2)
mask = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
th = 1
imask = mask>1
canvas = np.zeros_like(img2, np.uint8)
canvas[imask] = img2[imask]
And then this for normal subtraction:
def extract_diff(self,imageA, imageB, image_name, path):
subtract = imageB.astype(np.float32) - imageA.astype(np.float32)
mask = cv2.inRange(np.abs(subtract),(30,30,30),(255,255,255))
th = 1
imask = mask>1
canvas = np.zeros_like(imageA, np.uint8)
canvas[imask] = imageA[imask]
Thanks!
A difference can be negative or positive.
For some number types, such as uint8 (unsigned 8-bit int), which can't be negative (have no sign), a negative value wraps around and the value would make no sense anymore. Other types can be signed (e.g. floats, signed ints), so a negative value can be represented correctly.
That's why cv.absdiff exists. It always gives you absolute differences, and those are okay to represent in an unsigned type.
Example with numbers: a = 4, b = 6. a-b should be -2, right?
That value, as an uint8, will wrap around to become 0xFE, or 254 in decimal. The 254 value has some relation to the true -2 difference, but it also incorporates the range of values of the data type (8 bits: 256 values), so it's really just "code".
cv.absdiff would give you the absolute of the difference (-2), which is 2.

How are floating-point pixel values converted to integer values?

How does image library (such as PIL, OpenCV, etc) convert floating-point values to integer pixel values?
For example
import numpy as np
from PIL import Image
# Creates a random image and saves in a file
def get_random_img(m=0, s=1, fname='temp.png'):
im = m + s * np.random.randn(60, 60, 3) # For eg. min: -3.8947058634971179, max: 3.6822041760496904
print(im[0, 0]) # for eg. array([ 0.36234732, 0.96987366, 0.08343])
imp = Image.fromarray(im, 'RGB') # (*)
print(np.array(imp)[0, 0]) # [140 , 74, 217]
imp.save(fname)
return im, imp
For the above method, an example is provided in the comment (which is randomly produced). My question is: how does (*) convert ndarray (which can range from - infinity to plus infinity) to pixel values between 0 and 255?
I tried to investigate the Pil.Image.fromarray method and eventually ended by at line #798 d.decode(data) within Pil.Image.Image().frombytes method. I could find the implementation of decode method, thus unable to know what computation goes behind the conversion.
My initial thought was that maybe the method use minimum (to 0) and maximum (to 255) value from the array and then map all the other values accordingly between 0 and 255. But upon investigations, I found out that's not what is happening. Moreover, how does it handle when the values of the array range between 0 and 1 or any other range of values?
Some libraries assume that floating-point pixel values are between 0 and 1, and will linearly map that range to 0 and 255 when casting to 8-bit unsigned integer. Some others will find the minimum and maximum values and map those to 0 and 255. You should always explicitly do this conversion if you want to be sure of what happened to your data.
In general, a pixel does not need to be 8-bit unsigned integer. A pixel can have any numerical type. Usually a pixel intensity represents an amount of light, or a density of some sort, but this is not always the case. Any physical quantity can be sampled in 2 or more dimensions. The range of meaningful values thus depends on what is imaged. Negative values are often also meaningful.
Many cameras have 8-bit precision when converting light intensity to a digital number. Likewise, displays typically have an b-bit intensity range. This is the reason many image file formats store only 8-bit unsigned integer data. However, some cameras have 12 bits or more, and some processes derive pixel data with a higher precision that one does not want to quantize. Therefore formats such as TIFF and ICS will allow you to save images in just about any numeric format you can think of.
I'm afraid it has done nothing anywhere near as clever as you hoped! It has merely interpreted the first byte of the first float as a uint8, then the second byte as another uint8...
from random import random, seed
import numpy as np
from PIL import Image
# Generate repeatable random data, so other folks get the same results
np.random.seed(42)
# Make a single RGB pixel
im = np.random.randn(1, 1, 3)
# Print the floating point values - not that we are interested in them
print(im)
# OUTPUT: [[[ 0.49671415 -0.1382643 0.64768854]]]
# Save that pixel to a file so we can dump it
im.tofile('array.bin')
# Now make a PIL Image from it and print the uint8 RGB values
imp = Image.fromarray(im, 'RGB')
print(imp.getpixel((0,0)))
# OUTPUT: (124, 48, 169)
So, PIL has interpreted our data as RGB=124/48/169
Now look at the hex we dumped. It is 24 bytes long, i.e. 3 float64 (8-byte) values, one for red, one for green and one for blue for the 1 pixel in our image:
xxd array.bin
Output
00000000: 7c30 a928 2aca df3f 2a05 de05 a5b2 c1bf |0.(*..?*.......
00000010: 685e 2450 ddb9 e43f h^$P...?
And the first byte (7c) has become 124, the second byte (30) has become 48 and the third byte (a9) has become 169.
TLDR; PIL has merely taken the first byte of the first float as the Red uint8 channel of the first pixel, then the second byte of the first float as the Green uint8 channel of the first pixel and the third byte of the first float as the Blue uint8 channel of the first pixel.

if (freq) x$counts else x$density length > 1 and only the first element will be used

for my thesis I have to calculate the number of workers at risk of substitution by machines. I have calculated the probability of substitution (X) and the number of employee at risk (Y) for each occupation category. I have a dataset like this:
X Y
1 0.1300 0
2 0.1000 0
3 0.0841 1513
4 0.0221 287
5 0.1175 3641
....
700 0.9875 4000
I tried to plot a histogram with this command:
hist(dataset1$X,dataset1$Y,xlim=c(0,1),ylim=c(0,30000),breaks=100,main="Distribution",xlab="Probability",ylab="Number of employee")
But I get this error:
In if (freq) x$counts else x$density
length > 1 and only the first element will be used
Can someone tell me what is the problem and write me the right command?
Thank you!
It is worth pointing out that the message displayed is a Warning message, and should not prevent the results being plotted. However, it does indicate there are some issues with the data.
Without the full dataset, it is not 100% obvious what may be the problem. I believe it is caused by the data not being in the correct format, with two potential issues. Firstly, some values have a value of 0, and these won't be plotted on the histogram. Secondly, the observations appear to be inconsistently spaced.
Histograms are best built from one of two datasets:
A dataframe which has been aggregated grouped into consistently sized bins.
A list of values X which in the data
I prefer the second technique. As originally shown here The expandRows() function in the package splitstackshape can be used to repeat the number of rows in the dataframe by the number of observations:
set.seed(123)
dataset1 <- data.frame(X = runif(900, 0, 1), Y = runif(900, 0, 1000))
library(splitstackshape)
dataset2 <- expandRows(dataset1, "Y")
hist(dataset2$X, xlim=c(0,1))
dataset1$bins <- cut(dataset1$X, breaks = seq(0,1,0.01), labels = FALSE)

What does this CRC implementation mean by having a seed value?

I am trying to implement a CRC algorithm in Verilog for the SENT sensor protocol.
In a document put out by the SAE, they say their CRC uses the generator polynomial
x^4 + x^3 + x^2 + 1 and a seed value of 0101. I understand the basic concept of calculating a CRC using XOR division and saving the remainder, but everytime I try to compute a CRC I get the wrong answer.
I know this because in the same document they have a list of examples with data bits and the corresponding checksum.
For example, the series of hex values x"73E73E" has checksum 15 and the series x"748748" has checksum 3. Is there anyone who can arrive at these values using the information above? If so, how did you do it?
This is a couple of sentences copied from the document: "The CRC checksum can be implemented as a series of shift left by 4 (multiply by 16) followed by a 256 element array lookup. The checksum is determined by using all data nibbles in sequence and then checksumming the result with an
extra zero value."
Take a look at RevEng, which can determine the CRC parameters from examples (it would need more examples than you have provided).
The seed is simply the initial value of your crc calculation. It is usual to have a non-zero seed to avoid the crc result being zero in the case of all zero data
I just had to find out the same thing. I was checking a CRC implementation for the CRC algorithm which was cryptic albeit working. So I wanted to get the "normal" CRC algorithm to give me the same numbers so I could refactor without problems.
For the numbers you gave I get 0x73E73E => 12, 0x748748 => 3.
As you can read in Koopman the seed value "Prevents all-zero data word from resulting in all-zero check sequence".
I wrote my standard implementation using the algorithm from Wikipedia in Python:
def nCRCcalc( poly, data, crc, n):
crctemp = ( data << n ) | crc
# data width assumed to be 32 bits
shift = 32
while shift > n:
shift = shift - 1
mask = 1 << shift
if mask & crctemp:
crctemp = crctemp ^ ( poly << (shift - n) )
return crctemp
Poly is the polynomial, data is the data, crc is the seed value and n is the number of bits. So In this case Polynomial is 29, crc is 5 and n is 4.
You might need to reverse nibble order, depending on in which format you receive your data. Also this is obviously not the implementation with the table, just for checking.

linear transformation function

I need to write a function that takes 4 bytes as input, performs a reversible linear transformation on this, and returns it as 4 bytes.
But wait, there is more: it also has to be distributive, so changing one byte on the input should affect all 4 output bytes.
The issues:
if I use multiplication it won't be reversible after it is modded 255 via the storage as a byte (and its needs to stay as a byte)
if I use addition it can't be reversible and distributive
One solution:
I could create an array of bytes 256^4 long and fill it in, in a one to one mapping, this would work, but there are issues: this means I have to search a graph of size 256^8 due to having to search for free numbers for every value (should note distributivity should be sudo random based on a 64*64 array of byte). This solution also has the MINOR (lol) issue of needing 8GB of RAM, making this solution nonsense.
The domain of the input is the same as the domain of the output, every input has a unique output, in other words: a one to one mapping. As I noted on "one solution" this is very possible and I have used that method when a smaller domain (just 256) was in question. The fact is, as numbers get big that method becomes extraordinarily inefficient, the delta flaw was O(n^5) and omega was O(n^8) with similar crappiness in memory usage.
I was wondering if there was a clever way to do it. In a nutshell, it's a one to one mapping of domain (4 bytes or 256^4). Oh, and such simple things as N+1 can't be used, it has to be keyed off a 64*64 array of byte values that are sudo random but recreatable for reverse transformations.
Balanced Block Mixers are exactly what you're looking for.
Who knew?
Edit! It is not possible, if you indeed want a linear transformation. Here's the mathy solution:
You've got four bytes, a_1, a_2, a_3, a_4, which we'll think of as a vector a with 4 components, each of which is a number mod 256. A linear transformation is just a 4x4 matrix M whose elements are also numbers mod 256. You have two conditions:
From Ma, we can deduce a (this means that M is an invertible matrix).
If a and a' differ in a single coordinate, then Ma and Ma' must differ in every coordinate.
Condition (2) is a little trickier, but here's what it means. Since M is a linear transformation, we know that
M(a - a) = Ma - Ma'
On the left, since a and a' differ in a single coordinate, a - a has exactly one nonzero coordinate. On the right, since Ma and Ma' must differ in every coordinate, Ma - Ma' must have every coordinate nonzero.
So the matrix M must take a vector with a single nonzero coordinate to one with all nonzero coordinates. So we just need every entry of M to be a non-zero-divisor mod 256, i.e., to be odd.
Going back to condition (1), what does it mean for M to be invertible? Since we're considering it mod 256, we just need its determinant to be invertible mod 256; that is, its determinant must be odd.
So you need a 4x4 matrix with odd entries mod 256 whose determinant is odd. But this is impossible! Why? The determinant is computed by summing various products of entries. For a 4x4 matrix, there are 4! = 24 different summands, and each one, being a product of odd entries, is odd. But the sum of 24 odd numbers is even, so the determinant of such a matrix must be even!
Here are your requirements as I understand them:
Let B be the space of bytes. You want a one-to-one (and thus onto) function f: B^4 -> B^4.
If you change any single input byte, then all output bytes change.
Here's the simplest solution I have thusfar. I have avoided posting for a while because I kept trying to come up with a better solution, but I haven't thought of anything.
Okay, first of all, we need a function g: B -> B which takes a single byte and returns a single byte. This function must have two properties: g(x) is reversible, and x^g(x) is reversible. [Note: ^ is the XOR operator.] Any such g will do, but I will define a specific one later.
Given such a g, we define f by f(a,b,c,d) = (a^b^c^d, g(a)^b^c^d, a^g(b)^c^d, a^b^g(c)^d). Let's check your requirements:
Reversible: yes. If we XOR the first two output bytes, we get a^g(a), but by the second property of g, we can recover a. Similarly for the b and c. We can recover d after getting a,b, and c by XORing the first byte with (a^b^c).
Distributive: yes. Suppose b,c, and d are fixed. Then the function takes the form f(a,b,c,d) = (a^const, g(a)^const, a^const, a^const). If a changes, then so will a^const; similarly, if a changes, so will g(a), and thus so will g(a)^const. (The fact that g(a) changes if a does is by the first property of g; if it didn't then g(x) wouldn't be reversible.) The same holds for b and c. For d, it's even easier because then f(a,b,c,d) = (d^const, d^const, d^const, d^const) so if d changes, every byte changes.
Finally, we construct such a function g. Let T be the space of two-bit values, and h : T -> T the function such that h(0) = 0, h(1) = 2, h(2) = 3, and h(3) = 1. This function has the two desired properties of g, namely h(x) is reversible and so is x^h(x). (For the latter, check that 0^h(0) = 0, 1^h(1) = 3, 2^h(2) = 1, and 3^h(3) = 2.) So, finally, to compute g(x), split x into four groups of two bits, and take h of each quarter separately. Because h satisfies the two desired properties, and there's no interaction between the quarters, so does g.
I'm not sure I understand your question, but I think I get what you're trying to do.
Bitwise Exclusive Or is your friend.
If R = A XOR B, R XOR A gives B and R XOR B gives A back. So it's a reversible transformation, assuming you know the result and one of the inputs.
Assuming I understood what you're trying to do, I think any block cipher will do the job.
A block cipher takes a block of bits (say 128) and maps them reversibly to a different block with the same size.
Moreover, if you're using OFB mode you can use a block cipher to generate an infinite stream of pseudo-random bits. XORing these bits with your stream of bits will give you a transformation for any length of data.
I'm going to throw out an idea that may or may not work.
Use a set of linear functions mod 256, with odd prime coefficients.
For example:
b0 = 3 * a0 + 5 * a1 + 7 * a2 + 11 * a3;
b1 = 13 * a0 + 17 * a1 + 19 * a2 + 23 * a3;
If I remember the Chinese Remainder Theorem correctly, and I haven't looked at it in years, the ax are recoverable from the bx. There may even be a quick way to do it.
This is, I believe, a reversible transformation. It's linear, in that af(x) mod 256 = f(ax) and f(x) + f(y) mod 256 = f(x + y). Clearly, changing one input byte will change all the output bytes.
So, go look up the Chinese Remainder Theorem and see if this works.
What you mean by "linear" transformation?
O(n), or a function f with f(c * (a+b)) = c * f(a) + c * f(b)?
An easy approach would be a rotating bitshift (not sure if this fullfils the above math definition). Its reversible and every byte can be changed. But with this it does not enforce that every byte is changed.
EDIT: My solution would be this:
b0 = (a0 ^ a1 ^ a2 ^ a3)
b1 = a1 + b0 ( mod 256)
b2 = a2 + b0 ( mod 256)
b3 = a3 + b0 ( mod 256)
It would be reversible (just subtract the first byte from the other, and then XOR the 3 resulting bytes on the first), and a change in one bit would change every byte (as b0 is the result of all bytes and impacts all others).
Stick all of the bytes into 32-bit number and then do a shl or shr (shift left or shift right) by one, two or three. Then split it back into bytes (could use a variant record). This will move bits from each byte into the adjacent byte.
There are a number of good suggestions here (XOR, etc.) I would suggest combining them.
You could remap the bits. Let's use ii for input and oo for output:
oo[0] = (ii[0] & 0xC0) | (ii[1] & 0x30) | (ii[2] & 0x0C) | (ii[3] | 0x03)
oo[1] = (ii[0] & 0x30) | (ii[1] & 0x0C) | (ii[2] & 0x03) | (ii[3] | 0xC0)
oo[2] = (ii[0] & 0x0C) | (ii[1] & 0x03) | (ii[2] & 0xC0) | (ii[3] | 0x30)
oo[3] = (ii[0] & 0x03) | (ii[1] & 0xC0) | (ii[2] & 0x30) | (ii[3] | 0x0C)
It's not linear, but significantly changing one byte in the input will affect all the bytes in the output. I don't think you can have a reversible transformation such as changing one bit in the input will affect all four bytes of the output, but I don't have a proof.

Resources