I need to compare two images in a project,
The images would be two fruits of the same kind -let's say two different images of two different apples-
To be more clear, the database will have images of the stages which an apple takes from the day it was picked from a tree until it gets rotten..
The user would upload an image of the apple they have and the software should compare it to all those images in the database and retrieve the data of the matching image and tell the user at which stage is it...
I did compare before images using OpenCv emgu but I really don't have much knowledge if it's the best way...
I need an expert advise is what i said in the project even possible? or the whole database images' will match the user's image!
And is this "image processing" or something else?
And is there any suggested tutorials to learn how to do this?
I know it seems not totally clear yet, but it's just a crazy idea that I wish I can get a way to know more how i can bring it to life!
N.B the project will be an android application
This is an example of a supervised image classification problem, which is a pretty broad field. You can read up on image classification here.
The way that you would approach this problem would be to define a few stages of decay (fresh, starting to rot, half rotten, completely rotten), put together a dataset of many images of the fruit in each stage, and train an image classifier on each stage. The sample dataset should contain images of many different pieces of fruit in many different settings. If you want to support different types of fruit, you would need to train a different classifier for each fruit.
There are many image classification tools out there. To name a few:
OpenCV's haar classifier
dlib's hog classifier
Matlab's Computer Vision System Toolbox
VLFeat
It would be up to you to look into which approach would work best for your situation.
Given that this is a fairly broad problem, I wouldn't expect to come up with a solid solution quickly unless you've had experience with image classification. If you are trying to develop a product, I would recommend getting in touch with a computer vision expert that you could contract to solve it.
If you are just looking to learn more about image classification, however, this could be a fun way to play around with different tools and get a feel for what's out there. You may want to start by learning about Machine Learning in general. Caltech offers a free online course that gives a pretty good intro to the subject.
Related
I'm working on a project for visually impaired people that converts the visual world to audio.
We prefer to create a prototype that doesn't need an internet connection. So we chose to work with OpenCV. After reading (a lot of) tutorials and documentation we were able to train OpenCV in recognizing specific objects.
For example: we trained OpenCV to recognize a certain chair and a door. That works fine.
But, we also tried to train OpenCV on a "generic" level. It should be possible to recognize (almost) all chairs. We did that by training OpenCV with a lot of positive and negative images as explained here: http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
The actual result wasn't what we expected -he could not recognize any chair-. I know, there are a lot of different parameters to take into account (maybe we did something wrong with that) and we experimented a lot. But our time (and unfortunately our knowledge of opencv) is limited.
We are looking for some advice on how to train opencv to recognize generic objects.
Where do we start?
Is opencv even suited to do that?
Thank you for your time!
Open CV is the library to use. But object recognition is tricky. Often when people say they are doing "object recognition" they are not, they are processing one image, or at best a series of related images, to separate into object and background.
To recognise a "chair" - everything from an armchair to a dining chair to a throne - would be almost impossible. I'd want at least stereo images to give a chance to detect flat surfaces. I don't doubt that with a lot of work you can get quite a good result, maybe just recognising dining -style chairs, but it's skilled work, it's not just a case of feeding a few parameters to a hierarchical classifier.
I want to train a new haar-cascade for glasses as I'm not satisfied with the results I'm getting from the cascade that is included in OpenCV.
My main problem is that I'm not sure where to get eyeglasses images. I can manually search and download, but that's not practical for the amount of images I really need. I'm specifically looking for images of people wearing eyeglasses.
As this forum contain many experienced computer vision experts, I hope someone here can guide as to how to obtain images for training.
I'll also be happy to hear other approaches for detecting eyeglasses (on people).
Thanks in advance,
Gil
If you simply want images, it looks like #herhuyongtao pointed you to a good place. Then you can follow opencv's tutorial on training.
Another option is to see what others have trained:
There's a trained data set found here that might be of use, which states simply that it is "better". I'm assuming that it's supposed to be better than opencv.
I didn't immediately see any other places for trained or labeled data.
Can anyone advise me way to build effective face classifier that may be able to classify many different faces (~1000)?
And i have only 1-5 examples of each face
I know about opencv face classifier, but it works bad for my task (many classes, a few samples).
It works alright for one face classification with small number of samples. But i think that 1k separate classifier is not good idea
I read a few articles about face recognition but methods from these articles reqiues a lot of samples of each class for work
PS Sorry for my writing mistakes. English in not my native language.
Actually, for giving you a proper answer, I'd be happy to know some details of your task and your data. Face Recognition is a non-trivial problem and there is no general solution for all sorts of image acquisition.
First of all, you should define how many sources of variation (posing, emotions, illumination, occlusions or time-lapse) you have in your sample and testing sets. Then you should choose an appropriate algorithm and, very importantly, preprocessing steps according to the types.
If you don't have any significant variations, then it is a good idea to consider for a small training set one of the Discrete Orthogonal Moments as a feature extraction method. They have a very strong ability to extract features without redundancy. Some of them (Hahn, Racah moments) can also work in two modes - local and global feature extraction. The topic is relatively new, and there are still few articles about it. Although, they are thought to become a very powerful tool in Image Recognition. They can be computed in near real-time by using recurrence relationships. For more information, have a look here and here.
If the pose of the individuals significantly varies, you may try to perform firstly pose correction by Active Appearance Model.
If there are lots of occlusions (glasses, hats) then using one of the local feature extractors may help.
If there is a significant time lapse between train and probe images, the local features of the faces could change over the age, then it's a good option to try one of the algorithms which use graphs for face representation so as to keep the face topology.
I believe that non of the above are implemented in OpenCV, but for some of them you can find MATLAB implementation.
I'm not native speaker as well, so sorry for the grammar
Coming to your problem , it is very unique in its way. As you said there are only few images per class , the model which we train should either have an awesome architecture which can create better features within an image itself , or there should be an different approach which can achieve this task .
I have four things which I can share as of now :
Do data pre-processing and then create a bigger dataset and train on a neural network ideally. Here, we can do pre-processing like:
- image rotation
- image shearing
- image scaling
- image blurring
- image stretching
- image translation
and create atleast 200 images per class. Please checkout opencv documentation which provides many more methods on how you can increase the size of your dataset. Once you do this, then we can apply transfer learning , which is a better approach than training a neural network from scratch.
Transfer learning is a method where we train a network on our own custom classes , and this network is already pre-trained on 1000's of classes. Since our data here is very less, I would prefer transfer learning only. I have written a blog on how you can approach this using tranfer learning after you have the required amount of data. It is linked here. Face recognition also is a classification task itself, where each human is a separate class. So, follow the instructions given in the blog , may be it would help you create your own powerful classifer.
Another suggestion would be , after creating a dataset , encode them properly. This encoding would help you preserve the features in an image and can help you train better networks. VLAD ,Fisher , Bag of Words are few encoding techniques. You can search few repositories online which have implemented these already on ORL database. Once you encode , train the network on the encodings , you will obviously see a better performance.
Even do check out , Siamese network here which is meant for this purpose I feel . Here they compare two images with similar characteristics on different networks and there by achieve better classification accuracies . Git repository is here.
Another standard approach would be using SVM , Random forests since the data is less. If you still prefer neural networks the above methods would serve you the purpose. If you intend to go with encodings , then I would suggest random forests , as it is highly preferrable in learning and flexible too.
Hopefully , this answer would help you proceed in the right direction of achieving things.
You might want to take a look at OpenFace, a Python and Torch implementantion of face recognition with deep neural networks: https://cmusatyalab.github.io/openface/
How to perform image classification from mahout? How to convert the image to a form which is accepted by mahout classification algorithms? Is the any starter code to start with? Please share me some starter tutorials. Is mahout good library for image classification?
There are two answers to your question:
The simple answer is that from a Mahout point of view classifying images is no different than classifying any other type of data. You find a suitable set of features to describe your data, and then: train, validate, test, and deploy.
The second answer is a bit more involved, and I'm going to summarize. In the case of images the step in which you compute a suitable set of features spans a whole research area (called computer vision). There are many methods: DHOG, direction of gradient, SURF, SIFT, etc. Depending on the images and what your expectations are, you may obtain reasonable results just using an existing method, or maybe not. It would be impossible to say without looking at your images and you telling us your objectives.
can someone tell me how i can detect pictures of architecture or sculpture?
I think hough-transforming is a good approach. But i'm new in CV and maybe there a better methods to detect pattern. I heard about haarcascade. can i take this for architecture,too?
For example i want to detect those kind of pictures:
Image Hosted by ImageShack.us http://img842.imageshack.us/img842/4748/resizeimg0931.jpg
If you want an algorithm to detect them, then detecting an object from an image need a description of that object which can be understood by a machine or computer. For a sculpture or architecture, how can you have such uniform definition since they vary a lot in every sense? For example both your input images vary a lot. How can we differentiate between a house and an architecture? A lot of problems will rise in your question. Even with Hough Transforming, how you are supposed to differentiate a big house and a big architecture?
Check out this SOF : Image Processing: Algorithm Improvement for 'Coca-Cola Can' Recognition
He wants to detect coca-cola cans, and not coca-cola bottles. But if you look into it clearly, you will understand can and bottles are almost alike and it will be difficult to differentiate between them. You can find a lot of its difficulties in subsequent answers. Major problem is that, in some cases, it will be difficult for humans as well to differentiate them.
In your second image, even if you train some cascades for second image, there is a change it will detect live lions if they are present in your image, since a sculpture lion and an original lion seems almost same for a machine.
Haar cascades may not be much effective since you have to train for a lot of these kinds of images.
If you have some sample images and want to check if those things are there in your image, may be you can use SURF features etc. But you may need some sample images first to compare. For a demo of SURF, check out this SOF : OpenCV 2.4.1 - computing SURF descriptors in Python
Another option is template matching. But it is slow, and it is not scale and orientation invariant. And you need some template images for this
I think I have seen some papers relating this topic ( but i don't remember now). May be googling will get you them. I will update the answer if I get it.