I found the powerful RegexNER and it's superset TokensRegex from Stanford CoreNLP.
There are some rules that should give me fine results, like the pattern for PERSONs with titles:
"g. Meho Mehic" or "gdin. N. Neko" (g. and gdin. are abbrevs in Bosnian for mr.).
I'm having some trouble with existing tokenizer. It splits some strings on two tokens and some leaves as one, for example, token "g." is left as word <word>g.</word> and token "gdin." is split on 2 tokens: <word>gdin</word> and <word>.</word>.
That causes trouble with my regex, I have to deal with one-token and multi-token cases (note the two "maybe-dot"s), RegexNER example:
( /g\.?|gdin\.?/ /\./? ([{ word:/[A-Z][a-z]*\.?/ }]+) ) PERSON
Also, this causes another issue, with sentence splitting, some sentences are not well recognized so regex fails... For example, when a sentence contains "gdin." it will split it on two, so a dot will end the (non-existing) sentence. I managed to bypass this with ssplit.isOneSentence = true for now.
Questions:
Do I have to make my own tokenizer, and how? (to merge some tokens like "gdin.")
Are there any settings I missed that could help me with this?
Ok I thought about this for a bit and can actually think of something pretty straight forward for your case. One thing you could do is add "gdin" to the list of titles in the tokenizer.
The tokenizer rules are in edu.stanford.nlp.process.PTBLexer.flex (look at line 741)
I do not really understand the tokenizer that well, but clearly there are a list of job titles in there, so they must be cases where it will not split off the period.
This will of course require you to work with a custom build of Stanford CoreNLP.
You can get the full code at our GitHub:https://github.com/stanfordnlp/CoreNLP
There are instructions on the main page for building a jar with all of the main Stanford CoreNLP classes. I think if you just run the ant process it will automatically generate the new PTBLexer.java based on PTBLexer.flex.
Related
I'm having a hard time figuring out how to recognize some text only if it is preceded and followed by certain things. The task is to recognize AND, OR, and NOT, but not if they're part of a word:
They should be recognized here:
x AND y
(x)AND(y)
NOT x
NOT(x)
but not here:
xANDy
abcNOTdef
AND gets recognized if it is surrounded by spaces or parentheses. NOT gets recognized if it is at the beginning of the input, preceded by a space, and followed by a space or parenthesis.
The trouble is that if I include parentheses as part of the definition of AND or NOT, they get consumed, and I need them to be separate tokens.
Is there some kind of lookahead/lookbehind syntax I can use?
EDIT:
Per the comments, here's some context. The problem is related to this problem: Antlr: how to match everything between the other recognized tokens? My working solution there is just to recognize AND, OR, etc. and skip everything else. Then, in a second pass over the text, I manually grab the characters not otherwise covered, and run a totally different tokenizer on it. The reason is that I need a custom, human-language-specific tokenizer for this content, which means that I can't, in advance, describe what is an ID. Each human language is different. I want to combine, in stages, a single query-language tokenizer, and then apply a human-language tokenizer to what's left.
ANTLR is not the right tool for this task. A normal parser is designed for a specific language, that is, a set of sentences consisting of elements that are known at parser creation time. There are ways to make this more flexible, e.g. by using a runtime function in a predicate to recognize words not defined in the grammar, but this has other (negative) implications.
What you should consider is NLP for a different approach to process natural language. It's more than just skipping things between two known tokens.
I'm writing a program that takes in input a straight play in a custom format and then performs some analysis on it (like number of lines and words for each character). It's just for fun, and a pretext for learning cool stuff.
The first step in that process is writing a parser for that format. It goes :
####Play
###Act I
##Scene 1
CHARACTER 1. Line 1, he's saying some stuff.
#Comment, stage direction
CHARACTER 2, doing some stuff. Line 2, she's saying some stuff too.
It's quite a simple format. I read extensively about basic parser stuff like CFG, so I am now ready to get some work done.
I have written my grammar in EBNF and started playing with flex/bison but it raises some questions :
Is flex/bison too much for such a simple parser ? Should I just write it myself as described here : Is there an alternative for flex/bison that is usable on 8-bit embedded systems? ?
What is good practice regarding the respective tasks of the tokenizer and the parser itself ? There is never a single solution, and for such a simple language they often overlap. This is especially true for flex/bison, where flex can perform some intense stuff with regex matching. For example, should "#" be a token ? Should "####" be a token too ? Should I create types that carry semantic information so I can directly identify for example a character ? Or should I just process it with flex the simplest way then let the grammar defined in bison decide what is what ?
With flex/bison, does it makes sense to perform the analysis while parsing or is it more elegant to parse first, then operate on the file again with some other tool ?
This got me really confused. I am looking for an elegant, perhaps simple solution. Any guideline ?
By the way, about the programing language, I don't care much. For now I am using C because of flex/bison but feel free to advise me on anything more practical as long as it is a widely used language.
It's very difficult to answer those questions without knowing what your parsing expectations are. That is, an example of a few lines of text does not provide a clear understanding of what the intended parse is; what the lexical and syntactic units are; what relationships you would like to extract; and so on.
However, a rough guess might be that you intend to produce a nested parse, where ##{i} indicates the nesting level (inversely), with i≥1, since a single # is not structural. That violates one principle of language design ("don't make the user count things which the computer could count more accurately"), which might suggest a structure more like:
#play {
#act {
#scene {
#location: Elsinore. A platform before the castle.
#direction: FRANCISCO at his post. Enter to him BERNARDO
BERNARDO: Who's there?
FRANCISCO: Nay, answer me: stand, and unfold yourself.
BERNARDO: Long live the king!
FRANCISCO: Bernardo?
or even something XML-like. But that would be a different language :)
The problem with parsing either of these with a classic scanner/parser combination is that the lexical structure is inconsistent; the first token on a line is special, but most of the file consists of unparsed text. That will almost inevitably lead to spreading syntactic information between the scanner and the parser, because the scanner needs to know the syntactic context in order to decide whether or not it is scanning raw text.
You might be able to avoid that issue. For example, you might require that a continuation line start with whitespace, so that every line not otherwise marked with #'s starts with the name of a character. That would be more reliable than recognizing a dialogue line just because it starts with the name of a character and a period, since it is quite possible for a character's name to be used in dialogue, even at the end of a sentence (which consequently might be the first word in a continuation line.)
If you do intend for dialogue lines to be distinguished by the fact that they start with a character name and some punctuation then you will definitely have to give the scanner access to the character list (as a sort of symbol table), which is a well-known but not particularly respected hack.
Consider the above a reflection about your second question ("What are the roles of the scanner and the parser?"), which does not qualify as an answer but hopefully is at least food for thought. As to your other questions, and recognizing that all of this is opinionated:
Is flex/bison too much for such a simple parser ? Should I just write it myself...
The fact that flex and bison are (potentially) more powerful than necessary to parse a particular language is a red herring. C is more powerful than necessary to write a factorial function -- you could easily do it in assembler -- but writing a factorial function is a good exercise in learning C. Similarly, if you want to learn how to write parsers, it's a good idea to start with a simple language; obviously, that's not going to exercise every option in the parser/scanner generators, but it will get you started. The question really is whether the language you're designing is appropriate for this style of parsing, not whether it is too simple.
With flex/bison, does it makes sense to perform the analysis while parsing or is it more elegant to parse first, then operate on the file again with some other tool?
Either can be elegant, or disastrous; elegance has more to do with how you structure your thinking about the problem at hand. Having said that, it is often better to build a semantic structure (commonly referred to as an AST -- abstract syntax tree) during the parse phase and then analyse that structure using other functions.
Rescanning the input file is very unlikely to be either elegant or effective.
I am looking to write a basic profanity filter in a Rails based application. This will use a simply search and replace mechanism whenever the appropriate attribute gets submitted by a user. My question is, for those who have written these before, is there a CSV file or some database out there where a list of profanity words can be imported into my database? We are submitting the words that we will replace the profanities with on our own. We more or less need a database of profanities, racial slurs and anything that's not exactly rated PG-13 to get triggered.
As the Tin Man suggested, this problem is difficult, but it isn't impossible. I've built a commercial profanity filter named CleanSpeak that handles everything mentioned above (leet speak, phonetics, language rules, whitelisting, etc). CleanSpeak is capable of filtering 20,000 messages per second on a low end server, so it is possible to build something that works well and performs well. I will mention that CleanSpeak is the result of about 3 years of on-going development though.
There are a few things I tell everyone that is looking to try and tackle a language filter.
Don't use regular expressions unless you have a small list and don't mind a lot of things getting through. Regular expressions are relatively slow overall and hard to manage.
Determine if you want to handle conjugations, inflections and other language rules. These often add a considerable amount of time to the project.
Decide what type of performance you need and whether or not you can make multiple passes on the String. The more passes you make the slow your filter will be.
Understand the scunthrope and clbuttic problems and determine how you will handle these. This usually requires some form of language intelligence and whitelisting.
Realize that whitespace has a different meaning now. You can't use it as a word delimiter any more (b e c a u s e of this)
Be careful with your handling of punctuation because it can be used to get around the filter (l.i.k.e th---is)
Understand how people use ascii art and unicode to replace characters (/ = v - those are slashes). There are a lot of unicode characters that look like English characters and you will want to handle those appropriately.
Understand that people make up new profanity all the time by smashing words together (likethis) and figure out if you want to handle that.
You can search around StackOverflow for my comments on other threads as I might have more information on those threads that I've forgotten here.
Here's one you could use: Offensive/Profane Word List from CMU site
Based on personal experience, you do understand that it's an exercise in futility?
If someone wants to inject profanity, there's a slew of words that are innocent in one context, and profane in another so you'll have to write a context parser to avoid black-listing clean words. A quick glance at CMU's list shows words I'd never consider rude/crude/socially unacceptable. You'll see there are many words that could be proper names or nouns, countries, terms of endearment, etc. And, there are myriads of ways to throw your algorithm off using L33T speak and such. Search Wikipedia and the internets and you can build tables of variations of letters.
Look at CMU's list and imagine how long the list would be if, in addition to the correct letter, every a could also be 4, o could be 0 or p, e could be 3, s could be 5. And, that's a very, very, short example.
I was asked to do a similar task and wrote code to generate L33T variations of the words, and generated a hit-list of words based on several profanity/offensive lists available on the internet. After running the generator, and being a little over 1/4 of the way through the file, I had over one million entries in my DB. I pulled the plug on the project at that point, because the time spent searching, even using Perl's Regex::Assemble, was going to be ridiculous, especially since it'd still be so easy to fool.
I recommend you have a long talk with whoever requested that, and ask if they understand the programming issues involved, and low-likelihood of accuracy and success, especially over the long-term, or the possible customer backlash when they realize you're censoring them.
I have one that I've added to (obfuscated a bit) but here it is: https://github.com/rdp/sensible-cinema/blob/master/lib/subtitle_profanity_finder.rb
I'm making an application using a dependency tree parser. Actually, the parser is this one:
Parser Stanford, but it rarely change one or two letters of some words in a sentence that I want to parse. This is a big trouble for me, because I can't see any pattern in these changes and I need the dependency tree with the same words of my sentence.
All I can see is that just some words have these problems. I'm working with a tweets database. So, I have a lot of grammar mistakes in this data. For example the hashtag '#AllAmericanhumour ' becomes AllAmericanhumor. It misses one letter(u).
Is there anything I can do to solve this problem? In my first view I thought using an edit distance algorithm, but I think that might be an easier way to do it.
Thanks everybody in advance
You can give options to the tokenizer with the -tokenize.options flag/property. For this particular normalization, you can turn it off with
-tokenize.options americanize=false
There are also various other normalizations that you can turn off (see PTBTokenizer or http://nlp.stanford.edu/software/tokenizer.shtml. You can turn off a lot with
-tokenize.options ptb3Escaping=false
However, the parser is trained on data that looks like the output of ptb3Escaping=true and so will tend to degrade in performance if used with unnormalized tokens. So, you may want to consider alternative strategies.
If you're working at the Java level, you can look at the word tokens, which are actually Maps, and they have various keys. OriginalTextAnnotation will give you the unnormalized token, even when it has been normalized. CharacterOffsetBeginAnnotation and CharacterOffsetEndAnnotation will map to character offsets into the text.
p.s. And you should accept some answers :-).
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 6 years ago.
Improve this question
I am a college student getting my Computer Science degree. A lot of my fellow students really haven't done a lot of programming. They've done their class assignments, but let's be honest here those questions don't really teach you how to program.
I have had several other students ask me questions about how to parse things, and I'm never quite sure how to explain it to them. Is it best to start just going line by line looking for substrings, or just give them the more complicated lecture about using proper lexical analysis, etc. to create tokens, use BNF, and all of that other stuff? They never quite understand it when I try to explain it.
What's the best approach to explain this without confusing them or discouraging them from actually trying.
I'd explain parsing as the process of turning some kind of data into another kind of data.
In practice, for me this is almost always turning a string, or binary data, into a data structure inside my Program.
For example, turning
":Nick!User#Host PRIVMSG #channel :Hello!"
into (C)
struct irc_line {
char *nick;
char *user;
char *host;
char *command;
char **arguments;
char *message;
} sample = { "Nick", "User", "Host", "PRIVMSG", { "#channel" }, "Hello!" }
Parsing is the process of analyzing text made of a sequence of tokens to determine its grammatical structure with respect to a given (more or less) formal grammar.
The parser then builds a data structure based on the tokens. This data structure can then be used by a compiler, interpreter or translator to create an executable program or library.
(source: wikimedia.org)
If I gave you an english sentence, and asked you to break down the sentence into its parts of speech (nouns, verbs, etc.), you would be parsing the sentence.
That's the simplest explanation of parsing I can think of.
That said, parsing is a non-trivial computational problem. You have to start with simple examples, and work your way up to the more complex.
What is parsing?
In computer science, parsing is the process of analysing text to determine if it belongs to a specific language or not (i.e. is syntactically valid for that language's grammar). It is an informal name for the syntactic analysis process.
For example, suppose the language a^n b^n (which means same number of characters A followed by the same number of characters B). A parser for that language would accept AABB input and reject the AAAB input. That is what a parser does.
In addition, during this process a data structure could be created for further processing. In my previous example, it could, for instance, to store the AA and BB in two separate stacks.
Anything that happens after it, like giving meaning to AA or BB, or transform it in something else, is not parsing. Giving meaning to parts of an input sequence of tokens is called semantic analysis.
What isn't parsing?
Parsing is not transform one thing into another. Transforming A into B, is, in essence, what a compiler does. Compiling takes several steps, parsing is only one of them.
Parsing is not extracting meaning from a text. That is semantic analysis, a step of the compiling process.
What is the simplest way to understand it?
I think the best way for understanding the parsing concept is to begin with the simpler concepts. The simplest one in language processing subject is the finite automaton. It is a formalism to parsing regular languages, such as regular expressions.
It is very simple, you have an input, a set of states and a set of transitions. Consider the following language built over the alphabet { A, B }, L = { w | w starts with 'AA' or 'BB' as substring }. The automaton below represents a possible parser for that language whose all valid words starts with 'AA' or 'BB'.
A-->(q1)--A-->(qf)
/
(q0)
\
B-->(q2)--B-->(qf)
It is a very simple parser for that language. You start at (q0), the initial state, then you read a symbol from the input, if it is A then you move to (q1) state, otherwise (it is a B, remember the remember the alphabet is only A and B) you move to (q2) state and so on. If you reach (qf) state, then the input was accepted.
As it is visual, you only need a pencil and a piece of paper to explain what a parser is to anyone, including a child. I think the simplicity is what makes the automata the most suitable way to teaching language processing concepts, such as parsing.
Finally, being a Computer Science student, you will study such concepts in-deep at theoretical computer science classes such as Formal Languages and Theory of Computation.
Have them try to write a program that can evaluate arbitrary simple arithmetic expressions. This is a simple problem to understand but as you start getting deeper into it a lot of basic parsing starts to make sense.
Parsing is about READING data in one format, so that you can use it to your needs.
I think you need to teach them to think like this. So, this is the simplest way I can think of to explain parsing for someone new to this concept.
Generally, we try to parse data one line at a time because generally it is easier for humans to think this way, dividing and conquering, and also easier to code.
We call field to every minimum undivisible data. Name is field, Age is another field, and Surname is another field. For example.
In a line, we can have various fields. In order to distinguish them, we can delimit fields by separators or by the maximum length assign to each field.
For example:
By separating fields by comma
Paul,20,Jones
Or by space (Name can have 20 letters max, age up to 3 digits, Jones up to 20 letters)
Paul 020Jones
Any of the before set of fields is called a record.
To separate between a delimited field record we need to delimit record. A dot will be enough (though you know you can apply CR/LF).
A list could be:
Michael,39,Jordan.Shaquille,40,O'neal.Lebron,24,James.
or with CR/LF
Michael,39,Jordan
Shaquille,40,O'neal
Lebron,24,James
You can say them to list 10 nba (or nlf) players they like. Then, they should type them according to a format. Then make a program to parse it and display each record. One group, can make list in a comma-separated format and a program to parse a list in a fixed size format, and viceversa.
Parsing to me is breaking down something into meaningful parts... using a definable or predefined known, common set of part "definitions".
For programming languages there would be keyword parts, usable punctuation sequences...
For pumpkin pie it might be something like the crust, filling and toppings.
For written languages there might be what a word is, a sentence, what a verb is...
For spoken languages it might be tone, volume, mood, implication, emotion, context
Syntax analysis (as well as common sense after all) would tell if what your are parsing is a pumpkinpie or a programming language. Does it have crust? well maybe it's pumpkin pudding or perhaps a spoken language !
One thing to note about parsing stuff is there are usually many ways to break things into parts.
For example you could break up a pumpkin pie by cutting it from the center to the edge or from the bottom to the top or with a scoop to get the filling out or by using a sledge hammer or eating it.
And how you parse things would determine if doing something with those parts will be easy or hard.
In the "computer languages" world, there are common ways to parse text source code. These common methods (algorithims) have titles or names. Search the Internet for common methods/names for ways to parse languages. Wikipedia can help in this regard.
In linguistics, to divide language into small components that can be analyzed. For example, parsing this sentence would involve dividing it into words and phrases and identifying the type of each component (e.g.,verb, adjective, or noun).
Parsing is a very important part of many computer science disciplines. For example, compilers must parse source code to be able to translate it into object code. Likewise, any application that processes complex commands must be able to parse the commands. This includes virtually all end-user applications.
Parsing is often divided into lexical analysis and semantic parsing. Lexical analysis concentrates on dividing strings into components, called tokens, based on punctuationand other keys. Semantic parsing then attempts to determine the meaning of the string.
http://www.webopedia.com/TERM/P/parse.html
Simple explanation: Parsing is breaking a block of data into smaller pieces (tokens) by following a set of rules (using delimiters for example),
so that this data could be processes piece by piece (managed, analysed, interpreted, transmitted, ets).
Examples: Many applications (like Spreadsheet programs) use CSV (Comma Separated Values) file format to import and export data. CSV format makes it possible for the applications to process this data with a help of a special parser.
Web browsers have special parsers for HTML and CSS files. JSON parsers exist. All special file formats must have some parsers designed specifically for them.