In Java, it is very common to have a list of utility functions
public class Utils {
private Utils() {
}
public static void doSomething() {
System.out.println("Utils")
}
}
If I were in Swift, should I use class or struct to achieve the similar thing? Or, it really doesn't matter?
class
class Utils {
private init() {
}
static func doSomething() {
print("class Utils")
}
}
struct
struct Utils {
private init() {
}
static func doSomething() {
print("struct Utils")
}
}
I think a conversation about this has to start with an understanding of dependancy injection, what it is and what problem it solves.
Dependancy Injection
Programming is all about the assembly of small components into every-more-abstract assemblies that do cool things. That's fine, but large assemblies are hard to test, because they're very complex. Ideally, we want to test the small components, and the way they fit together, rather than testing entire assemblies.
To that end, unit and integration tests are incredibly useful. However, every global function call (including direct calls to static functions, which are really just global functions in a nice little namespace) is a liability. It's a fixed junction with no seam that can be cut apart by a unit test. For example, if you have a view controller that directly calls a sort method, you have no way to test your view controller in isolation of the sort method. There's a few consequences of this:
Your unit tests take longer, because they test dependancies multiple times (e.g. the sort method is tested by every piece of code that uses it). This disincentivizes running them regularly, which is a big deal.
Your unit tests become worse at isolating issues. Broke the sort method? Now half your tests are failing (everything that transitively depends on the sort method). Hunting down the issue is harder than if only a single test-case failed.
Dynamic dispatch introduces seams. Seams are points of configurability in the code. Where one implementation can be changed taken out, and another one put in. For example, you might want to have a an MockDataStore, a BetaDataStore, and a ProdDataStore, which is picked depending on the environment. If all 3 of these types conform to a common protocol, than dependant code could be written to depend on the protocol that allows these different implementations to be swapped around as necessary.
To this end, for code that you want to be able to isolate out, you never want to use global functions (like foo()), or direct calls to static functinos (which are effectively just global functions in a namespace), like FooUtils.foo(). If you want to replace foo() with foo2() or FooUtils.foo() with BarUtils.foo(), you can't.
Dependancy injection is the practice of "injecting" dependancies (depending on a configuration, rather than hard coding them. Rather than hard-coding a dependancy on FooUtils.foo(), you make a Fooable interface, which requires a function foo. In the dependant code (the type that will call foo), you will store an instance member of type Fooable. When you need to call foo, call self.myFoo.foo(). This way, you will be calling whatever implementation of Fooable has been provided ("injected") to the self instance at the time of its construction. It could be a MockFoo, a NoOpFoo, a ProdFoo, it doesn't care. All it knows is that its myFoo member has a foo function, and that it can be called to take care of all of it's foo needs.
The same thing above could also be achieve a base-class/sub-class relationship, which for these intents and purposes acts just like a protocol/conforming-type relationship.
The tools of the trade
As you noticed, Swift gives much more flexibility in Java. When writing a function, you have the option to use:
A global function
An instance function (of a struct, class, or enum)
A static function (of a struct, class, or enum)
A class function (of a class)
There is a time and a place where each is appropriate. Java shoves options 2 and 3 down your throat (mainly option 2), whereas Swift lets you lean on your own judgement more often. I'll talk about each case, when you might want to use it, and when you might not.
1) Global functions
These can be useful for one-of utility functions, where there isn't much benefit to " grouping" them in a particular way.
Pros:
Short names due to unqualified access (can access foo, rather than FooUtils.foo)
Short to write
Cons:
Pollutes the global name space, and makes auto-completion less useful.
Not grouped in a way that aids discoverability
Cannot be dependancy injected
Any accessed state must be global state, which is almost always a recipe for a disaster
2) Instance functions
Pros:
Group related operations under a common namespace
Have access to localized state (the members of self), which is almost always preferable over global state.
Can be dependancy injected
Can be overridden by subclasses
Cons:
Longer to write than global functions
Sometimes instances don't make sense. E.g. if you have to make an empty MathUtils object, just to use its pow instance method, which doesn't actually use any instance data (e.g. MathUtils().pow(2, 2))
3) Static functions
Pros:
Group related operations under a common namespace
Can be dependancy in Swift (where protocols can support the requirement for static functions, subscripts, and properties)
Cons:
Longer to write than global functions
It's hard to extend these to be stateful in the future. Once a function is written as static, it requires an API-breaking change to turn it into an instance function, which is necessary if the need for instance state ever arrises.
4) Class functions
For classes, static func is like final class func. These are supported in Java, but in Swift you can also have non-finals class functions. The only difference here is that they support overriding (by a subclass). All other pro/cons are shared with static functions.
Which one should I use?
It depends.
If the piece you're programming is one that would like to isolate for testing, then global functions aren't a candidate. You have to use either protocol or inheritance based dependancy injection. Static functions could be appropriate if the code does not nned to have some sort of instance state (and is never expected to need it), whereas an instance function should be when instance state is needed. If you're not sure, you should opt for an instance function, because as mentioned earlier, transitioning a function from static to instance is an API breaking change, and one that you would want to avoid if possible.
If the new piece is really simple, perhaps it could be a global function. E.g. print, min, abs, isKnownUniquelyReferenced, etc. But only if there's no grouping that makes sense. There are exceptions to look out for:
If your code repeats a common prefix, naming pattern, etc., that's a strong indication that a logical grouping exists, which could be better expressed as unification under a common namespace. For example:
func formatDecimal(_: Decimal) -> String { ... }
func formatCurrency(_: Price) -> String { ... }
func formatDate(_: Date) -> String { ... }
func formatDistance(_: Measurement<Distance>) -> String { ... }
Could be better expressed if these functions were grouped under a common umbrella. In this case, we don't need instance state, so we don't need to use instance methods. Additionally, it would make sense to have an instance of FormattingUtils (since it has no state, and nothing that could use that state), so outlawing the creation of instances is probably a good idea. An empty enum does just that.
enum FormatUtils {
func formatDecimal(_: Decimal) -> String { ... }
func formatCurrency(_: Price) -> String { ... }
func formatDate(_: Date) -> String { ... }
func formatDistance(_: Measurement<Distance>) -> String { ... }
}
Not only does this logical grouping "make sense", it also has the added benefit of bringing you one step closer to supporting dependancy injection for this type. All you would need is to extract the interface into a new FormatterUtils protocol, rename this type to ProdFormatterUtils, and change dependant code to rely on the protocol rather than the concrete type.
If you find that you have code like in case 1, but also find yourself repeating the same parameter in each function, that's a very strong indication that you have a type abstraction just waiting to be discovered. Consider this example:
func enableLED(pin: Int) { ... }
func disableLED(pin: Int) { ... }
func checkLEDStatus(pin: Int) -> Bool { ... }
Not only can we apply the refactoring from point 1 above, but we can also notice that pin: Int is a repeated parameter, which could be better expressed as an instance of a type. Compare:
class LED { // or struct/enum, depending on the situation.
let pin: Int
init(pin: Int)? {
guard pinNumberIsValid(pin) else { return nil }
self.pin = pin
}
func enable() { ... }
func disable() { ... }
func status() -> Bool { ... }
}
Compared to the refactoring from point 1, this changes the call site from
LEDUtils.enableLED(pin: 1)`
LEDUtils.disableLED(pin: 1)`
to
guard let redLED = LED(pin: 1) else { fatalError("Invalid LED pin!") }
redLED.enable();
redLED.disable();
Not only is this nicer, but now we have a way to clearly distinguish functions that expect any old integer, and those which expect an LED pin's number, by using Int vs LED. We also give a central place for all LED-related operations, and a central point at which we can validate that a pin number is indeed valid. You know that if you have an instance of LED provided to you, the pin is valid. You don't need to check it for yourself, because you can rely on it already having been checked (otherwise this LED instance wouldn't exist).
I remember I read somewhere about something that's more or less like this:
class Process <T> {
var data: Array<T> = [];
func addData (element: T) { data.append(T); }
}
This way, I can instantiate the object like this:
let objInt = Process <Int>
objInt.addData (100);
let objString = Process <String>
objString.addData ("Hello");
I want to know what is this "T", how it works, how to implement it, and how to create a class that is partially based on this dynamic type "T". But I don't know what is the keyword to search on the internet for this. I search for dynamic type in Swift, but all google returns me is about identifying and printing class' run-time dynamic type. Can somebody helps? Thanks.
Generics
From Swift programming language book
"Generic code enables you to write flexible, reusable functions and types that can work with any type, subject to requirements that you define. You can write code that avoids duplication and expresses its intent in a clear, abstracted manner."
The generic version uses a placeholder type name (called T or any other name) instead of an actual type name (such as Int, String, or Double). So in your case Process class can hold data of any type which is specified by T parameter.
You mean generics. Here is the link
For example, I'd like to just be able to write:
class Dog {
final String name;
Dog(this.name);
bark() => 'Woof woof said $name';
}
But have #Dog.bark's type definition be () => String.
This previously wasn't possible in Dart 1.x, but I'm hoping type inference can save the day and avoid having to type trivial functions where the return type is inferable (the same as it does for closures today?)
The language team doesn't currently have any plans to do inference on member return types based on their bodies. There are definitely cases like this where it would be nice, but there are other cases (like recursive methods) where it doesn't work.
With inference, we have to balance a few opposing forces:
Having smart inference that handles lots of different cases to alleviate as much typing pain as we can.
Having some explicit type annotations so that things like API boundaries are well-defined. If you change a method body and that changes the inferred return type, now you've made a potentially breaking change to your API.
Having a simple boundary between code that is inferred and code that is not so that users can easily reason about which parts of their code are type safe and which need more attention.
The case you bring up is right at the intersection of those. Personally, I lean towards not inferring. I like my class APIs to be pretty explicitly typed anyway, since I find it makes them easier to read and maintain.
Keep in mind that there are similar cases where inference does come into play:
Dart will infer the return type of an anonymous function based on its body. That makes things like lambdas passed to map() do what you want.
It will infer the return type of a method override from the method it is overriding. You don't need to annotate the return type in Beagle.bark() here:
class Dog {
String bark() => "Bark!";
}
class Beagle extends Dog {
final String name;
Dog(this.name);
bark() => 'Woof woof said $name';
}
I have some data which I want to wrap up in a collection. The data comes from two different sources using two different techniques so I'm trying to implement two structs which can conform to a common protocol. I would like to return a type which looks something like this:
Collection<Media>
But Collection is not generic. I have two data sources and therefore two classes which need to implement Collection but which I need to return through a single method.
My problem is that I want to return a type which can represent either of the two implementation and which the calling code will understand to represent Media.
I've tried building a protocol like this:
protocol MediaCollection:Collection {
subscript(i:Int) -> Media { get }
}
But I get complication errors because the code in Collection references Self and Swift doesn't like that. Telling me that MediaCollection cannot be used as a generic constraint because it has Self or associated type requirements.
I've also found that if I do something like this:
class MediaConnection:Collection {
var startIndex:Int {...}
var endIndex:Int {...}
func index(after i:Int) -> Int {...}
subscript(i:Int) -> Media {...}
}
It will compile the MediaCollection class, but when I try to use Collection as a type in a method signature I get the same problem.
I'm thinking at the moment the only option is to create a AbstractMediaCollection class. Then create a MediaCollection:AbstractMediaCollection and use AbstractMediaCollection in my method signatures. Really UGLY!
I've done lots of reading but I'm really not sure how to approach this problem.
Maybe it's a stupid question, but I couldn't find any solutions yet. So, my problem is, that is have an event emitter protocol with a function like this:
mutating func on(eventName:String, action:((Any?)->())) {
//..
}
And I want to use it to inform the listeners whenever an event is triggered with some information. Access token for the "login" event for example.
appSessionHadler.on("login") { (weak data: String?) in
//...
}
And than I get an error, that I cannot invoke "on" with that argument list of type. Of course it works with Any:
appSessionHadler.on("login") { (weak data: Any?) in
//...
}
Everything conforms to Any, so I'm a but confused. Can someone explain this, please!
I could solve this with a Generic protocol, but it still frustrates me that it does not works like this.
You're making a promise the compiler can't keep. The on function is free to call action with any kind of data at all. But the function you passed only accepts String. What is the system supposed to do if on includes the following code (directly or indirectly):
action(1)
1 is not a String, so type safety would be broken. The compiler can't let you do that.
Another way to think about this is that on takes a function of type F, and you are passing a supertype of F rather than a subtype of F. String is a subtype of Any. But function parameters work in the reverse order. (String)->Void is a supertype of (Any)->Void. So this is the same as passing a variable of type Any to a function that requires String. Formally we say that functions are contravariant in their parameters and covariant in their return values. You can read more on that in Type Variance in Swift.
As you suspect, generics are the right answer here. Any is almost always the wrong tool. And Any? is one of the hardest types to work with in Swift, so I'd definitely avoid that one at all costs. (Optional is itself a subtype of Any, and Swift has automatic promotion to Optional, so it is very common when you have Any? to start getting double Optionals and worse.)