How to create paper used notation in Latex? - latex

How to use Latex to create a notation style like this image. or any other suggestions ?

\documentclass{article}
% See http://tex.stackexchange.com/questions/112576/math-mode-in-tabular-without-having-to-use-everywhere
\usepackage{amstext}
\usepackage{array}
\usepackage{amssymb}
\newcolumntype{L}{>{$}l<{$}}
\begin{document}
\textbf{Typing rules for F$_1$}
\begin{tabular}{LLL}
\hline
\text{\footnotesize(Env $\varnothing$)} &
\text{\footnotesize(Env $x$)}\\
\frac{}{\varnothing \vdash \diamond} &
\frac{E \vdash A \quad x \notin dom(E)}{E, x:A \vdash \diamond} \\
&&\\
\text{\footnotesize(Type Const} &
\text{\footnotesize(Type Arrow)}\\
\frac{E \vdash \diamond}{E \vdash K} &
\frac{E \vdash A \quad E \vdash B}{E \vdash A \rightarrow B} \\
&&\\
\text{\footnotesize(Val $x$)} &
\text{\footnotesize(Val Fun)} &
\text{\footnotesize(Val Appl)} \\
\frac{E\vdash \diamond}{E \vdash x :E(x)} &
\frac{E,x:A\vdash b:B}{E \vdash \lambda(x:A)b :A \rightarrow B} &
\frac{E \vdash b:A \rightarrow B \quad E \vdash a : A}{E \vdash b(a) : B} \\
\hline
\end{tabular}
\end{document}

Related

Centered Cells in Latex

Hello I'm trying to use cells in latex.
image of my cell here
How do you put the "Func2" and the "-" centered in the cell?
The code I'm using is:
\begin{tabularx}{0.8\textwidth} {
| >{\raggedright\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\raggedleft\arraybackslash}X | }
\hline
\multicolumn{3}{|c|}{2D - $L = 64$} \\
\hline
Speedup(x) & Func1 & Func2 \\
\hline
Func2 & 35.4 & - \\
\hline
Func3 & 322.8 & 9.1 \\
\hline
\end{tabularx}
You could use the tabularray package. This makes it easy to change the alignment for individual cells:
\documentclass{article}
\usepackage{tabularray}
\begin{document}
\begin{tblr}{
width={0.8\textwidth},
colspec={|X|X[halign=c]|X[halign=r]|}
}
\hline
\SetCell[c=3]{halign=c} 2D - $L = 64$ \\
\hline
Speedup(x) & Func1 & \SetCell{halign=c} Func2 \\
\hline
Func2 & 35.4 & \SetCell{halign=c} - \\
\hline
Func3 & 322.8 & 9.1 \\
\hline
\end{tblr}
\end{document}

Brackets around a very tall matrix

\documentclass{article}
\usepackage{amsmath}
\begin{document}
\noindent
A =
\bigg[
\begin{smallmatrix}
1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0 \\
0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0 \\
0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0 \\
0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0 \\
0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0 \\
0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0 \\
0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0 \\
0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0 \\
0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0 \\
0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0 \\
0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0 \\
0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1 \\
\end{smallmatrix}
\bigg]
\noindent
You can use the tabularray package with its math library:
\documentclass{article}
\usepackage{amsmath}
\usepackage{tabularray}
\UseTblrLibrary{amsmath}
\begin{document}
\[
A =
\begin{+bmatrix}
1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0 \\
0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0 \\
0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0 \\
0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0 \\
0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0 \\
0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0 \\
0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0 \\
0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0 \\
0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0 \\
0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0&0 \\
0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0&0 \\
0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1&0 \\
0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&1 \\
\end{+bmatrix}
\]
\end{document}

align ! missing } inserted

I am trying to typeset the following equation in the align-evoirement
\begin{align}
t_2' &= t_2 + \frac{L/C} \\
t_1' &= t_1 + \frac{L + v\Delta t\cos\theta}{c} \\
t_2' - t_1' &= (t_2-t_1) + \frac{L-L-v\Delta t\cos\theta}{C} \\
\Delta t' &= \Delta t - \frac{v\Delta t \cos \theta}{c} \\
\Delta t' &= \Delta t \left(1-\frac{v\cos\theta}{c}\right) \\
\frac{1}{\nu} &= \frac{1}{\nu_0 \sqrt{1-\frac{v^2}{c^2}}}~\left(1-\frac{v\cos \theta {c}\right) \\
\nu &= \nu_0\frac{ \sqrt{1-\dfrac{v^2}{c^2}}}{1-\dfrac{v\cos \theta }{c}}
\end{align}
But when I tried this I got the following message:
[45]
! Missing } inserted.
<inserted text>
}
l.938 \end{align}
?
I copied the equations in Matcha (without the &), where it was perfectly working... I tried some things, but those did not seem to work...
Does anybody know what I did wrong?
At two occasions you write \frac{..} without the mandatary second argument. You must write \frac{...}{...} instead.
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\begin{align}
t_2' &= t_2 + \frac{L}{C} \\
t_1' &= t_1 + \frac{L + v\Delta t\cos\theta}{c} \\
t_2' - t_1' &= (t_2-t_1) + \frac{L-L-v\Delta t\cos\theta}{C} \\
\Delta t' &= \Delta t - \frac{v\Delta t \cos \theta}{c} \\
\Delta t' &= \Delta t \left(1-\frac{v\cos\theta}{c}\right) \\
\frac{1}{\nu} &= \frac{1}{\nu_0 \sqrt{1-\frac{v^2}{c^2}}}~\left(1-\frac{v\cos \theta}{c}\right) \\
\nu &= \nu_0\frac{ \sqrt{1-\dfrac{v^2}{c^2}}}{1-\dfrac{v\cos \theta }{c}}
\end{align}
\end{document}

LaTeX table too wide, how can I make it fit?

\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{proof}
\usepackage[left=0.60in, right=0.60in, top=0.65in, bottom=0.65in, footskip=0.1in]{geometry}
\title{Peergrade 1}
\author{anonymous}
\date{September 2020}
\begin{document}
\maketitle
\section{Exercise 1}
\begin{tiny}
\begin{table}[h]
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline
A & B & C & A -\textgreater B & B -\textgreater $\sim$C & A -\textgreater $\sim$C & C -\textgreater $\sim$A & (A -\textgreater $\sim$C) /\textbackslash (C -\textgreater $\sim$A) & (B -\textgreater $\sim$C) -\textgreater ((A -\textgreater $\sim$C) /\textbackslash (C -\textgreater $\sim$A)) & Prop 1 \\ \hline
T & T & T & T & F & F & F & F & T & T \\ \hline
T & T & F & T & T & T & T & T & T & T \\ \hline
T & F & T & F & F & F & F & F & T & T \\ \hline
T & F & F & F & T & T & T & T & T & T \\ \hline
F & T & T & T & F & T & T & T & T & T \\ \hline
F & T & F & T & T & T & T & T & T & T \\ \hline
F & F & T & T & F & T & T & T & T & T \\ \hline
F & F & F & T & T & T & T & T & T & T \\ \hline
\end{tabular}
\end{table}
\end{tiny}
\end{document}
Can anyone help me so that the table fits in LaTeX? It almost fits, but half of the last column part goes outiside the paper. I have already tried to add /small and /footnotesize, but it doesnt work.
Please have a look at http://betterposters.blogspot.de/2012/08/the-data-prison.html how to design nice looking tables
You could use a tabularx and let latex adjust the size:
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{proof}
\usepackage[left=0.60in, right=0.60in, top=0.65in, bottom=0.65in, footskip=0.1in]{geometry}
\usepackage{tabularx}
\title{Peergrade 1}
\author{anonymous}
\date{September 2020}
\begin{document}
\maketitle
\section{Exercise 1}
\begin{tiny}
\begin{table}[h]
\begin{tabularx}{\linewidth}{|l|l|l|l|l|l|l|l|X|l|}
\hline
A & B & C & A -\textgreater B & B -\textgreater $\sim$C & A -\textgreater $\sim$C & C -\textgreater $\sim$A & (A -\textgreater $\sim$C) /\textbackslash (C -\textgreater $\sim$A) & (B -\textgreater $\sim$C) -\textgreater ((A -\textgreater $\sim$C) /\textbackslash (C -\textgreater $\sim$A)) & Prop 1 \\ \hline
T & T & T & T & F & F & F & F & T & T \\ \hline
T & T & F & T & T & T & T & T & T & T \\ \hline
T & F & T & F & F & F & F & F & T & T \\ \hline
T & F & F & F & T & T & T & T & T & T \\ \hline
F & T & T & T & F & T & T & T & T & T \\ \hline
F & T & F & T & T & T & T & T & T & T \\ \hline
F & F & T & T & F & T & T & T & T & T \\ \hline
F & F & F & T & T & T & T & T & T & T \\ \hline
\end{tabularx}
\end{table}
\end{tiny}
\end{document}
Just complementing the answer, if the table is very large, it's possible to rotate the sheet by using pdflscape:
\usepackage{pdflscape}
...
\begin{landscape}
(Your Table)
\end{landscape}
My solution:
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{proof}
\usepackage[left=0.60in, right=0.60in, top=0.65in, bottom=0.65in, footskip=0.1in]{geometry}
\title{Peergrade 1}
\author{anonymous}
\date{September 2020}
\begin{document}
\maketitle
\section{Exercise 1}
%\begin{tiny}
\begin{table}[h]
\begin{tabular}{|l|l|l|l|l|l|l|p{20mm}|p{22mm}|l|}
\hline
A & B & C & A -\textgreater B & B -\textgreater $\sim$C %
& A -\textgreater $\sim$C & C -\textgreater $\sim$A %
& (A -\textgreater $\sim$C) \par /\textbackslash (C -\textgreater $\sim$A) %
& (B -\textgreater $\sim$C) \par -\textgreater ((A -\textgreater $\sim$C) \par %
/\textbackslash (C -\textgreater $\sim$A)) & Prop 1 \\ \hline
T & T & T & T & F & F & F & F & T & T \\ \hline
T & T & F & T & T & T & T & T & T & T \\ \hline
T & F & T & F & F & F & F & F & T & T \\ \hline
T & F & F & F & T & T & T & T & T & T \\ \hline
F & T & T & T & F & T & T & T & T & T \\ \hline
F & T & F & T & T & T & T & T & T & T \\ \hline
F & F & T & T & F & T & T & T & T & T \\ \hline
F & F & F & T & T & T & T & T & T & T \\ \hline
\end{tabular}
\end{table}
%\end{tiny}
\end{document}
I have only edited the alignment of the 8th and 9th column (p{20mm}|p{22mm}) and added three \par in the first cell in such columns (out of dollar signs, you're typing text in the cells).
Anyway the solution with tabularx by #samcarter is very good.

How can I align equations belong to different { part? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
I am a beginner in latex. I have the following piece of latex code. The code is working fine but I wish all the equality operators and the "if kflag=n" of each equation be aligned and written in one equation box with one equation counting number. How can it be done?
\begin{equation} %kflag=0
\left \{
\begin{array}{rl}
T =& (1-D)\sigma_{max,0}\times e^{1-\frac{\Delta_n}{\delta_n}}\times \frac{\Delta_n}{\delta_n}\\
K =& \frac{(1-D)\sigma_{max,0}}{\delta_n}\times e^{1-\frac{\Delta_n}{\delta_n}}\times (1-\frac{\Delta_n}{\delta_n})\\
\end{array}
\right.
\quad \text{if} \quad kflag=0
\end{equation}
\begin{equation} %kflag=1
\left \{
\begin{array}{rl}
T =& \alpha\sigma_{max,0}\times e^{1-\frac{\Delta_n}{\delta_n}}\times \frac{\Delta_n}{\delta_n}\\
K =& \frac{\alpha\sigma_{max,0}}{\delta_n}\times e^{1-\frac{\Delta_n}{\delta_n}}\times (1-\frac{\Delta_n}{\delta_n})\\
\end{array}
\right.
\quad \text{if} \quad kflag=1
\end{equation}
\begin{equation} %kflag=2
\left \{
\begin{array}{rl}
T =& (1-D)\sigma_{max,0}\times e^{1-\frac{\Delta_n}{\delta_n}}\times \frac{\Delta_n}{\delta_n}+T_{max}-\\
&(1-D)\sigma_{max,0}\times e\times\frac{\Delta_{max}}{\delta_n}+\\
&10\times \sigma_{max,0}\times e^{1-\frac{\Delta_n}{\delta_n}}\times \frac{\Delta_n}{\delta_n}\\
K =& 11\times\frac{(1-D)\sigma_{max,0}}{\delta_n}\times e^{1-\frac{\Delta_n}{\delta_n}}\times (1-\frac{\Delta_n}{\delta_n})\\
\end{array}
\right.
\quad \text{if} \quad kflag=2
\end{equation}
\begin{equation} %kflag=3
\left \{
\begin{array}{rl}
T =& T_{max}+K\times(\Delta_n-\Delta_{max})\\
K =& \frac{(1-D)\sigma_{max,0}*e}{\delta_n}\\
\end{array}
\right.
\quad \text{if} \quad kflag=3
\end{equation}
Right now the equations look like this
Here's an option using a multitude of nested structures - equation for the numbering, aligned for the horizontal alignment of structures and dcases (or cases) for the left-braced content.
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\newcommand{\Ddn}{\frac{\Delta_n}{\delta_n}}
\newcommand{\smz}{\sigma_{\mathrm{max}, 0}}
\begin{equation}
\begin{aligned}
&\begin{dcases}
\phantom{K}\mathllap{T} = (1 - D) \smz \times e^{1 - \Ddn} \times \Ddn \\
K = \frac{(1 - D) \smz}{\delta_n} \times e^{1 - \Ddn} \times \bigl( 1 - \Ddn \bigr)
\end{dcases} & \text{if $k$-flag} = 0 \\ % k-flag = 0
&\begin{dcases}
\phantom{K}\mathllap{T} = \alpha \smz \times e^{1 - \Ddn} \times \Ddn \\
K = \frac{\alpha \smz}{\delta_n} \times e^{1 - \Ddn} \times \bigl( 1 - \Ddn \bigr)
\end{dcases} & \text{if $k$-flag} = 1 \\ % k-flag = 1
&\begin{dcases}
\phantom{K}\mathllap{T} = \begin{aligned}[t]
&(1 - D) \smz \times e^{1 - \Ddn} \times \Ddn + T_{\mathrm{max}} \\
&{} - (1 - D) \smz \times e \times \frac{\Delta_{\mathrm{max}}}{\delta_n} \\
&{} + 10 \times \smz \times e^{1 - \Ddn} \times \Ddn
\end{aligned} \\
K = 11 \times \frac{(1 - D) \smz}{\delta_n} \times e^{1 - \Ddn} \times \bigl( 1 - \Ddn \bigr)
\end{dcases} & \text{if $k$-flag} = 2 \\ % k-flag = 2
&\begin{dcases}
\phantom{K}\mathllap{T} = T_{\mathrm{max}} + K \times (\Delta_n - \Delta_{\mathrm{max}}) \\
K = \frac{(1 - D) \smz \times e}{\delta_n}
\end{dcases} & \text{if $k$-flag} = 3
\end{aligned}
\end{equation}
\end{document}

Resources