minΣ(||xi-Xci||^2+ λ||ci||),
s.t cii = 0,
where X is a matrix of shape d * n and C is of the shape n * n, xi and ci means a column of X and C separately.
X is known here and based on X we want to find C.
Usually with a loss like that you need to vectorize it, instead of working with columns:
loss = X - tf.matmul(X, C)
loss = tf.reduce_sum(tf.square(loss))
reg_loss = tf.reduce_sum(tf.square(C), 0) # L2 loss for each column
reg_loss = tf.reduce_sum(tf.sqrt(reg_loss))
total_loss = loss + lambd * reg_loss
To implement the zero constraint on the diagonal of C, the best way is to add it to the loss with another constant lambd2:
reg_loss2 = tf.trace(tf.square(C))
total_loss = total_loss + lambd2 * reg_loss2
Related
I am trying to do a simple weight update using the optimizer like below:
x = torch.rand(10, requires_grad=True)
y = x * 15. + 10.
optimizer = torch.optim.Adam
loss = torch.nn.MSELoss()
def train(x, y, loss, ep, opti):
w = torch.rand(1, dtype=torch.float32, requires_grad=True)
b = torch.rand(1, dtype=torch.float32, requires_grad=True)
op = opti([w, b])
for e in range(ep):
y_hat = x.multiply(w) + b
l = loss(y_hat, y)
print(f'Epoch: {e}, loss: {l}')
l.backward()
op.step()
op.zero_grad()
return w, b
w_hat, b_hat = train(x, y, loss, 10, optimizer)
However I am getting the Trying to backward through the graph a second time error even though I am not aware why as I am zeroing the gradients at each step.
Do you have any suggetions?
The reason is x
Please change first line to x = torch.rand(10)
I m having some doubt when practicing Pytorch program.
I have function like y = m1x1 + m2x2 + c (just 2 weights to learn here). The expected values of weight should be 16,-14 and bias should be 36. But in every epoch the learned wight goes very big. Can any one help me to debug and understand this 20 lines of code, what going wrong here.
import torch
x = torch.randint(size = (1,2), high = 10)
w = torch.Tensor([16,-14])
b = 36
#Compute Ground Truth
y = w * x + b
#Find weights by program
epoch = 20
learning_rate = 30
#initialize random
w1 = torch.rand(size= (1,2), requires_grad= True)
b1 = torch.ones(size = [1], requires_grad= True)
for i in range(epoch):
y1 = w1 * x + b1
#loss function RMSQ
loss = torch.sum((y1-y)**2)
#Find gradient
loss.backward()
with torch.no_grad():
#update parameters
w1 -= (learning_rate * w1.grad)
b1 -= (learning_rate * b1.grad)
w1.grad.zero_()
b1.grad.zero_()
print("B ", b1)
print("W ", w1)
Thanks,
Ganesh
You have a very large learning rate.
This is an illustration from Jeremy Jordan's blog that explains exactly what is going on in your case.
I was following Siraj Raval's videos on logistic regression using gradient descent :
1) Link to longer video :
https://www.youtube.com/watch?v=XdM6ER7zTLk&t=2686s
2) Link to shorter video :
https://www.youtube.com/watch?v=xRJCOz3AfYY&list=PL2-dafEMk2A7mu0bSksCGMJEmeddU_H4D
In the videos he talks about using gradient descent to reduce the error for a set number of iterations so that the function converges(slope becomes zero).
He also illustrates the process via code. The following are the two main functions from the code :
def step_gradient(b_current, m_current, points, learningRate):
b_gradient = 0
m_gradient = 0
N = float(len(points))
for i in range(0, len(points)):
x = points[i, 0]
y = points[i, 1]
b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
new_b = b_current - (learningRate * b_gradient)
new_m = m_current - (learningRate * m_gradient)
return [new_b, new_m]
def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
b = starting_b
m = starting_m
for i in range(num_iterations):
b, m = step_gradient(b, m, array(points), learning_rate)
return [b, m]
#The above functions are called below:
learning_rate = 0.0001
initial_b = 0 # initial y-intercept guess
initial_m = 0 # initial slope guess
num_iterations = 1000
[b, m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations)
# code taken from Siraj Raval's github page
Why does the value of b & m continue to update for all the iterations? After a certain number of iterations, the function will converge, when we find the values of b & m that give slope = 0.
So why do we continue iteration after that point and continue updating b & m ?
This way, aren't we losing the 'correct' b & m values? How is learning rate helping the convergence process if we continue to update values after converging? Thus, why is there no check for convergence, and so how is this actually working?
In practice, most likely you will not reach to slope 0 exactly. Thinking of your loss function as a bowl. If your learning rate is too high, it is possible to overshoot over the lowest point of the bowl. On the contrary, if the learning rate is too low, your learning will become too slow and won't reach the lowest point of the bowl before all iterations are done.
That's why in machine learning, the learning rate is an important hyperparameter to tune.
Actually, once we reach a slope 0; b_gradient and m_gradient will become 0;
thus, for :
new_b = b_current - (learningRate * b_gradient)
new_m = m_current - (learningRate * m_gradient)
new_b and new_m will remain the old correct values; as nothing will be subtracted from them.
I am building a neural network to learn to recognize handwritten digits from MNIST. I have confirmed that backpropagation calculates the gradients perfectly (gradient checking gives error < 10 ^ -10).
It appears that no matter how I train the weights, the cost function always tends towards around 3.24-3.25 (never below that, just approaching from above) and the training/test set accuracy is very low (around 11% for the test set). It appears that the h values in the end are all very close to 0.1 and to each other.
I cannot find why my program cannot produce better results. I was wondering if anyone could maybe take a look at my code and please tell me any reasons for this occurring. Thank you so much for all your help, I really appreciate it!
Here is my Python code:
import numpy as np
import math
from tensorflow.examples.tutorials.mnist import input_data
# Neural network has four layers
# The input layer has 784 nodes
# The two hidden layers each have 5 nodes
# The output layer has 10 nodes
num_layer = 4
num_node = [784,5,5,10]
num_output_node = 10
# 30000 training sets are used
# 10000 test sets are used
# Can be adjusted
Ntrain = 30000
Ntest = 10000
# Sigmoid Function
def g(X):
return 1/(1 + np.exp(-X))
# Forwardpropagation
def h(W,X):
a = X
for l in range(num_layer - 1):
a = np.insert(a,0,1)
z = np.dot(a,W[l])
a = g(z)
return a
# Cost Function
def J(y, W, X, Lambda):
cost = 0
for i in range(Ntrain):
H = h(W,X[i])
for k in range(num_output_node):
cost = cost + y[i][k] * math.log(H[k]) + (1-y[i][k]) * math.log(1-H[k])
regularization = 0
for l in range(num_layer - 1):
for i in range(num_node[l]):
for j in range(num_node[l+1]):
regularization = regularization + W[l][i+1][j] ** 2
return (-1/Ntrain * cost + Lambda / (2*Ntrain) * regularization)
# Backpropagation - confirmed to be correct
# Algorithm based on https://www.coursera.org/learn/machine-learning/lecture/1z9WW/backpropagation-algorithm
# Returns D, the value of the gradient
def BackPropagation(y, W, X, Lambda):
delta = np.empty(num_layer-1, dtype = object)
for l in range(num_layer - 1):
delta[l] = np.zeros((num_node[l]+1,num_node[l+1]))
for i in range(Ntrain):
A = np.empty(num_layer-1, dtype = object)
a = X[i]
for l in range(num_layer - 1):
A[l] = a
a = np.insert(a,0,1)
z = np.dot(a,W[l])
a = g(z)
diff = a - y[i]
delta[num_layer-2] = delta[num_layer-2] + np.outer(np.insert(A[num_layer-2],0,1),diff)
for l in range(num_layer-2):
index = num_layer-2-l
diff = np.multiply(np.dot(np.array([W[index][k+1] for k in range(num_node[index])]), diff), np.multiply(A[index], 1-A[index]))
delta[index-1] = delta[index-1] + np.outer(np.insert(A[index-1],0,1),diff)
D = np.empty(num_layer-1, dtype = object)
for l in range(num_layer - 1):
D[l] = np.zeros((num_node[l]+1,num_node[l+1]))
for l in range(num_layer-1):
for i in range(num_node[l]+1):
if i == 0:
for j in range(num_node[l+1]):
D[l][i][j] = 1/Ntrain * delta[l][i][j]
else:
for j in range(num_node[l+1]):
D[l][i][j] = 1/Ntrain * (delta[l][i][j] + Lambda * W[l][i][j])
return D
# Neural network - this is where the learning/adjusting of weights occur
# W is the weights
# learn is the learning rate
# iterations is the number of iterations we pass over the training set
# Lambda is the regularization parameter
def NeuralNetwork(y, X, learn, iterations, Lambda):
W = np.empty(num_layer-1, dtype = object)
for l in range(num_layer - 1):
W[l] = np.random.rand(num_node[l]+1,num_node[l+1])/100
for k in range(iterations):
print(J(y, W, X, Lambda))
D = BackPropagation(y, W, X, Lambda)
for l in range(num_layer-1):
W[l] = W[l] - learn * D[l]
print(J(y, W, X, Lambda))
return W
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Training data, read from MNIST
inputpix = []
output = []
for i in range(Ntrain):
inputpix.append(2 * np.array(mnist.train.images[i]) - 1)
output.append(np.array(mnist.train.labels[i]))
np.savetxt('input.txt', inputpix, delimiter=' ')
np.savetxt('output.txt', output, delimiter=' ')
# Train the weights
finalweights = NeuralNetwork(output, inputpix, 2, 5, 1)
# Test data
inputtestpix = []
outputtest = []
for i in range(Ntest):
inputtestpix.append(2 * np.array(mnist.test.images[i]) - 1)
outputtest.append(np.array(mnist.test.labels[i]))
np.savetxt('inputtest.txt', inputtestpix, delimiter=' ')
np.savetxt('outputtest.txt', outputtest, delimiter=' ')
# Determine the accuracy of the training data
count = 0
for i in range(Ntrain):
H = h(finalweights,inputpix[i])
print(H)
for j in range(num_output_node):
if H[j] == np.amax(H) and output[i][j] == 1:
count = count + 1
print(count/Ntrain)
# Determine the accuracy of the test data
count = 0
for i in range(Ntest):
H = h(finalweights,inputtestpix[i])
print(H)
for j in range(num_output_node):
if H[j] == np.amax(H) and outputtest[i][j] == 1:
count = count + 1
print(count/Ntest)
Your network is tiny, 5 neurons make it basically a linear model. Increase it to 256 per layer.
Notice, that trivial linear model has 768 * 10 + 10 (biases) parameters, adding up to 7690 floats. Your neural network on the other hand has 768 * 5 + 5 + 5 * 5 + 5 + 5 * 10 + 10 = 3845 + 30 + 60 = 3935. In other words despite being nonlinear neural network, it is actualy a simpler model than a trivial logistic regression applied to this problem. And logistic regression obtains around 11% error on its own, thus you cannot really expect to beat it. Of course this is not a strict argument, but should give you some intuition for why it should not work.
Second issue is related to other hyperparameters, you seem to be using:
huge learning rate (is it 2?) it should be more of order 0.0001
very little training iterations (are you just executing 5 epochs?)
your regularization parameter is huge (it is set to 1), so your network is heavily penalised for learning anything, again - change it to something order of magnitude smaller
The NN architecture is most likely under-fitting. Maybe, the learning rate is high/low. Or there are most issues with the regularization parameter.
I'm trying to implement a regression NN that has 3 layers (1 input, 1 hidden and 1 output layer with a continuous result). As a basis I took a classification NN from coursera.org class, but changed the cost function and gradient calculation so as to fit a regression problem (and not a classification one):
My nnCostFunction now is:
function [J grad] = nnCostFunctionLinear(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
m = size(X, 1);
a1 = X;
a1 = [ones(m, 1) a1];
a2 = a1 * Theta1';
a2 = [ones(m, 1) a2];
a3 = a2 * Theta2';
Y = y;
J = 1/(2*m)*sum(sum((a3 - Y).^2))
th1 = Theta1;
th1(:,1) = 0; %set bias = 0 in reg. formula
th2 = Theta2;
th2(:,1) = 0;
t1 = th1.^2;
t2 = th2.^2;
th = sum(sum(t1)) + sum(sum(t2));
th = lambda * th / (2*m);
J = J + th; %regularization
del_3 = a3 - Y;
t1 = del_3'*a2;
Theta2_grad = 2*(t1)/m + lambda*th2/m;
t1 = del_3 * Theta2;
del_2 = t1 .* a2;
del_2 = del_2(:,2:end);
t1 = del_2'*a1;
Theta1_grad = 2*(t1)/m + lambda*th1/m;
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end
Then I use this func in fmincg algorithm, but in firsts iterations fmincg end it's work. I think my gradient is wrong, but I can't find the error.
Can anybody help?
If I understand correctly, your first block of code (shown below) -
m = size(X, 1);
a1 = X;
a1 = [ones(m, 1) a1];
a2 = a1 * Theta1';
a2 = [ones(m, 1) a2];
a3 = a2 * Theta2';
Y = y;
is to get the output a(3) at the output layer.
Ng's slides about NN has the below configuration to calculate a(3). It's different from what your code presents.
in the middle/output layer, you are not doing the activation function g, e.g., a sigmoid function.
In terms of the cost function J without regularization terms, Ng's slides has the below formula:
I don't understand why you can compute it using:
J = 1/(2*m)*sum(sum((a3 - Y).^2))
because you are not including the log function at all.
Mikhaill, I´ve been playing with a NN for continuous regression as well, and had a similar issues at some point. The best thing to do here would be to test gradient computation against a numerical calculation before running the model. If that´s not correct, fmincg won´t be able to train the model. (Btw, I discourage you of using numerical gradient as the time involved is much bigger).
Taking into account that you took this idea from Ng´s Coursera class, I´ll implement a possible solution for you to try using the same notation for Octave.
% Cost function without regularization.
J = 1/2/m^2*sum((a3-Y).^2);
% In case it´s needed, regularization term is added (i.e. for Training).
if (reg==true);
J=J+lambda/2/m*(sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2)));
endif;
% Derivatives are computed for layer 2 and 3.
d3=(a3.-Y);
d2=d3*Theta2(:,2:end);
% Theta grad is computed without regularization.
Theta1_grad=(d2'*a1)./m;
Theta2_grad=(d3'*a2)./m;
% Regularization is added to grad computation.
Theta1_grad(:,2:end)=Theta1_grad(:,2:end)+(lambda/m).*Theta1(:,2:end);
Theta2_grad(:,2:end)=Theta2_grad(:,2:end)+(lambda/m).*Theta2(:,2:end);
% Unroll gradients.
grad = [Theta1_grad(:) ; Theta2_grad(:)];
Note that, since you have taken out all the sigmoid activation, the derivative calculation is quite simple and results in a simplification of the original code.
Next steps:
1. Check this code to understand if it makes sense to your problem.
2. Use gradient checking to test gradient calculation.
3. Finally, use fmincg and check you get different results.
Try to include sigmoid function to compute second layer (hidden layer) values and avoid sigmoid in calculating the target (output) value.
function [J grad] = nnCostFunction1(nnParams, ...
inputLayerSize, ...
hiddenLayerSize, ...
numLabels, ...
X, y, lambda)
Theta1 = reshape(nnParams(1:hiddenLayerSize * (inputLayerSize + 1)), ...
hiddenLayerSize, (inputLayerSize + 1));
Theta2 = reshape(nnParams((1 + (hiddenLayerSize * (inputLayerSize + 1))):end), ...
numLabels, (hiddenLayerSize + 1));
Theta1Grad = zeros(size(Theta1));
Theta2Grad = zeros(size(Theta2));
m = size(X,1);
a1 = [ones(m, 1) X]';
z2 = Theta1 * a1;
a2 = sigmoid(z2);
a2 = [ones(1, m); a2];
z3 = Theta2 * a2;
a3 = z3;
Y = y';
r1 = lambda / (2 * m) * sum(sum(Theta1(:, 2:end) .* Theta1(:, 2:end)));
r2 = lambda / (2 * m) * sum(sum(Theta2(:, 2:end) .* Theta2(:, 2:end)));
J = 1 / ( 2 * m ) * (a3 - Y) * (a3 - Y)' + r1 + r2;
delta3 = a3 - Y;
delta2 = (Theta2' * delta3) .* sigmoidGradient([ones(1, m); z2]);
delta2 = delta2(2:end, :);
Theta2Grad = 1 / m * (delta3 * a2');
Theta2Grad(:, 2:end) = Theta2Grad(:, 2:end) + lambda / m * Theta2(:, 2:end);
Theta1Grad = 1 / m * (delta2 * a1');
Theta1Grad(:, 2:end) = Theta1Grad(:, 2:end) + lambda / m * Theta1(:, 2:end);
grad = [Theta1Grad(:) ; Theta2Grad(:)];
end
Normalize the inputs before passing it in nnCostFunction.
In accordance with Week 5 Lecture Notes guideline for a Linear System NN you should make following changes in the initial code:
Remove num_lables or make it 1 (in reshape() as well)
No need to convert y into a logical matrix
For a2 - replace sigmoid() function to tanh()
In d2 calculation - replace sigmoidGradient(z2) with (1-tanh(z2).^2)
Remove sigmoid from output layer (a3 = z3)
Replace cost function in the unregularized portion to linear one: J = (1/(2*m))*sum((a3-y).^2)
Create predictLinear(): use predict() function as a basis, replace sigmoid with tanh() for the first layer hypothesis, remove second sigmoid for the second layer hypothesis, remove the line with max() function, use output of the hidden layer hypothesis as a prediction result
Verify your nnCostFunctionLinear() on the test case from the lecture note