1) How many memory cells are there in "4K x 8" memory?
2) How many words can be stored in it?
3) How many bits are there in every word?
The "4K x 8" notation indicates memory organization: it means there are 4096 memory locations, each containing 8 bits. I'll assume the word size is 4 bytes (word size varies across architectures, typical choices include 1, 2, 4, and 8 bytes). To answer your questions:
There are 4096 (which is what 4K tells you) memory locations, with each cell storing 8 bits (which is what x8 tells you).
We can store 1024 words (1024=4096/4) because one word (of size 32 bits) fits into 4 cells (4=32/8).
In every word there are 32 bits (32=4*8).
Related
I'm reading this book 3 easy pieces by remzi. In chapter 18 paging introduction in the first paragraph it is written
(real address spaces are much bigger, of course,
commonly 32 bits and thus 4-GB of address space, or even 64 bits)
Now if 1 byte is 8 bits, shouldn't 32 bits be 32/8 4 bytes space? I have seen the math for getting the answer as 4GB
2^10 = 1KB
2^10 = 1MB
2^10 = 1GB
But then this is assuming 2^1 = 1B, But isn't this simply wrong?
What am I missing? What does my answer (4Bytes) represent here?
This question is related How many bits are needed to address this much memory?
But doesn't address why my math is incorrect. (OP there also has the exact same confusion).
Lets say that I change the word size to 64MB (wild I know). Then number of words is 1. According to the answers, number of bits would be 2^0 = 1, 0 bits? Then where and when do we use the fact that 1 byte = 8 bits?
Any help would be appreciated.
Today, RAM is byte addressable. Each address put on the address bus returns 1 byte. If you have 32 bits, the amount of different addresses that you can come up with is 2^32 = 4,294,967,296. Since you can have that much different addresses, then you can address that much bytes. In terms of bytes, this amount of bytes is called 4 GB.
Let's say a computer can hold a word size of 26 bits, I'm curious to know how many memory addresses can the processor generate?
I'm thinking that the maximum number it can hold would be 2^26 - 1 and can have 2^26 unique memory addresses.
I'm also curious to know that if let's say that each cell in the memory has a size of 12 bits then how many bytes of memory can this processor address?
My understanding is that in most cases a processor can hold up to 32 bits which is 4 bytes and each byte is 8 bits. However, in this case, each byte would be 12 bits and the processor would be able to address 2^26/12 bytes of memory. Is that safe to say?
I'm thinking that the maximum number it can hold would be 2^26 - 1 and can have 2^26 unique memory addresses.
I agree. We usually refer to this as the size of the address space.
As for the next question:
These days, the term byte is generally agreed to means 8 bits, so 12 bits would mean 1.5 bytes. It is a matter of terminology, though, which has varied in the long past.
So, I would say 226 12-bit words is capable of holding/storing 226 * 1.5 bytes, though they are not individually addressable, and would have to be packed & unpacked to access the separate bytes.
The DEC PDP-8 computer was a 12 bit computer and word addressable, so there were multiple schemes for storing characters: two 6 bit characters in a 12 bit word, and also 1 & 1/2 8-bit characters in a 12-bit word, so three 8-bit characters in two 12-bit words.
Similar issues occur when storing packed booleans in a memory, where each boolean takes only a single bit, yet the processor can access a minimum of 8 bits at a time, so must extract a single bit from a larger datum.
I'm just checking to make sure I have a proper understanding of how memory access works.
Say I have a word-addressable memory system with 64-bit words.
How much memory could be accessed using a 32-bit address size?
A 64 bit word is 8 bytes, so we're dealing with an 8 byte word.
An 8 byte word can hold up to 2^8 (256).
Given that we have a 32 bit address, we have 2^32, but since each word is taking up 256 of those, (2^32)/256 = 1677216 bytes.
To put that into metric terms, we have 2^24 = (2^4) * (2^20) = 16 Mb.
Is this the proper way of doing this?
A 32 bit address provides 4,294,967,296 possible addresses. If the smallest addressable element is a 64 bit == 8 byte word (versus a byte), then the total amount of addressable space would be 4,294,967,296 x 8 = 34,359,738,368 bytes= 34GB.
As for the capacity of an 8 byte word, it's 8 bytes, not 2^8 = 256 bytes.
Note some old computers did have a basic addressing system that only addressed words. Byte accessing required a byte index or offset from a word based address. I don't think any current computers use such a scheme.
You are taking 32 bit address which means 2^32 bits can be addressed but if you want how many bytes can be address then just divide it like 2^32/8=2^29 because 1 byte have 8 bit
and if you want how many words can be addressed then 2^29/8 because 1 word contains 8 bytes so 2^26 words can be addressed.
And since one word is 8 byte so we can address (2^26)*8 bytes.
Hope it might help!
I'm just checking to make sure I have a proper understanding of how memory access works.
Say I have a word-addressable memory system with 64-bit words.
How much memory could be accessed using a 32-bit address size?
A 64 bit word is 8 bytes, so we're dealing with an 8 byte word.
An 8 byte word can hold up to 2^8 (256).
Given that we have a 32 bit address, we have 2^32, but since each word is taking up 256 of those, (2^32)/256 = 1677216 bytes.
To put that into metric terms, we have 2^24 = (2^4) * (2^20) = 16 Mb.
Is this the proper way of doing this?
A 32 bit address provides 4,294,967,296 possible addresses. If the smallest addressable element is a 64 bit == 8 byte word (versus a byte), then the total amount of addressable space would be 4,294,967,296 x 8 = 34,359,738,368 bytes= 34GB.
As for the capacity of an 8 byte word, it's 8 bytes, not 2^8 = 256 bytes.
Note some old computers did have a basic addressing system that only addressed words. Byte accessing required a byte index or offset from a word based address. I don't think any current computers use such a scheme.
You are taking 32 bit address which means 2^32 bits can be addressed but if you want how many bytes can be address then just divide it like 2^32/8=2^29 because 1 byte have 8 bit
and if you want how many words can be addressed then 2^29/8 because 1 word contains 8 bytes so 2^26 words can be addressed.
And since one word is 8 byte so we can address (2^26)*8 bytes.
Hope it might help!
I'm reading a book about assembly; Jones and Bartlett Publishers Introduction to 80x86 Assembly
The author give exercises but no answers to it. Obviously before going further, I want
to make sure that I fully understand the chapter concepts.
donc,
What is the 8-hex-digit address of the "last" byte for a PC with 32 MBytes of RAM
This is my solution:
1) convert to bits
32 MBytes = 268435456 bits
2) I subtract 8 bits to remove the last byte
268435448
3) conversion to hexadecimal
FFFFFF8
So I got FFFFFF8
Does this look a good answer?
No. For assembly programming it's very helpful to be able to do simple power-of-2 calculations in your head. 1K is 2^10. So 1M is 2^20. So 32M is 2^25 (because 2^5 = 32). So the address of the last byte is 2^25-1 (because the first byte is at 0). This is 25 bits that are all 1's (because 2^n-1 is always n 1's). In hex, this is six F's (4 bits per F) plus an additional 1, so prepending a zero to get 8 hex digits, you have 01FFFFFF.
There are two things you should think about:
For most computers (all PCs) adresses are given in bytes, not in bits.
Therefore you must calculate: 32 MByte = 33554432 Bytes, minus 1 byte = 01FFFFFF (hex) as "Gene" wrote in his answer.
In reality (if you are interested in) you must also think about the fact that there is a "gap" in the address area (from 000A0000 to 000FFFFF) of real PCs so either not all the RAM is useable or the last address of the RAM comes later. This area is used for the graphics card and the BIOS ROM.
I thinking is : 00007FFF
because: 32MB = 32*1024 = 32768
byte last have address 32767 (7FFF)