Finishing NSOperation on different thread - ios

I'm curious whether it is safe to finish custom NSOperation on different thread that their origin thread e.g.:
I have my custom operation class which is executed on different thread let say thread B (not main thread), then in this operation class I have obviously start() method, where on very beginning I'm invoking [self markAsExecuting]; method to indicate that operation already starts their work and of course after some stuff I have to invoke [self markAsFinished]; to indicate that all work has been done and operation is finished.
My question is: whether it is safe to invoke [self markAsFinished]; method on different thread that my operation itself is execute let say thread C?
Some snipped code:
- (void)start {
#autoreleasepool {
// *** Thread B
[self markAsExecuting];
[apiManager fetchData completion:^(NSDictionary *data, NSError *error) {
if (error == nil) {
// As we know in this case when we do not indicate that AFNetworking response handle should be executed on different thread by default it will be executed on main thread, so that why I'm dispatching expensive work to the background
self.queue = dispatch_queue_create("com.something.myapp.backgroundQueue", 0);
dispatch_async(self.queue, ^{
// Some expensive work
// *** Thread C
[weakSelf markAsFinished];
});
} else {
// *** Main Thread
[weakSelf markAsFinished];
}
}];
}
}
I'm hope that my problem explanation was clear enough.

My question was maybe not precisely enough, markAsFinish method only set the Operation state to .finish so it doesn't make big different from which thread it is called in this case

Related

Dispatch Queue and NSOperation queue

I am creating a serial queue in which i add two task as shown below
dispatch_queue_t serial = dispatch_queue_create("com.apple.serial", DISPATCH_QUEUE_SERIAL);
**//Task 1**
dispatch_async(serial, ^{
[NMUserAPIManager getUserProfileData:^(NMUser *objUser) {
NSLog(#"Get User Profile .....");
_objUser = objUser;
}];
});
**//Task 2**
dispatch_async(serial, ^{
[NMUserAPIManager getUserRecentTransactionData:^(NSDictionary *responseDictionary) {
_accountTableView.hidden = NO;
[self recentTransactionSetup:responseDictionary];
NSLog(#"Get User Recent transaction");
dispatch_async(dispatch_get_main_queue(), ^{
[self reloadTableData];
});
}];
});
Inside that two task i am calling web service with NSURLSession. Problem is that before my Task 1 completion handle Task2 completion handle get called. According to theory by using serial queue each task waits for the previous task to finish before being executed. It my understanding is correct.
NSURLSession's already run on a background thread, so the issue you are seeing here is that as far as your serial queue is concerned once you call 'getUserProfileData:' technically the work for that block in your queue is finished because the NSURLSession is running on a different thread. If your main goal here is to simply call your second task after your first one completes I don't think you need your own queue you would probably be better off simply doing something like:
[NMUserAPIManager getUserProfileData:^(NMUser *objUser) {
NSLog(#"Get User Profile .....");
_objUser = objUser;
[self getUserTransactions];
}];
-(void)getUserTransactions
{
[NMUserAPIManager getUserRecentTransactionData:^(NSDictionary *responseDictionary) {
_accountTableView.hidden = NO;
[self recentTransactionSetup:responseDictionary];
NSLog(#"Get User Recent transaction");
dispatch_async(dispatch_get_main_queue(), ^{
[self reloadTableData];
});
}];
}
EDIT:
If you are looking for something a little more robust I would check out this post for how you can subclass NSOperation to make your own Asynchronous Operation which you can then use with an NSOperationQueue.

iOS Stop block execution from progressing until block has finished

I have a method in an iOS app that is supposed to return a bool value depending upon whether or not a web call succeeds.
The web call is structured in a way such that it takes a block as a callback parameter and that callback is called when the web call has a result. Based on that result my method needs to return a True/False value.
So, I need to stop execution from progressing any further without first having a result to return.
I am trying to achieve this via semaphores, after looking at some examples that others have shared, but the callback is never called, if I remove the semaphore then the callback is always called.
What am I missing here?
+ (BOOL)getUserInformation {
__block BOOL flag = false;
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
[[WebServicesManager sharedManager] getUserInformationWithCallback:^(NSInteger statusCode, NSString *response, NSDictionary *responseHeaders, id obj, NSError *error) {
if (error) {
//Handle error case and perform appropriate cleanup actions.
}
else
{
//Save user information
flag = true;
}
dispatch_semaphore_signal(semaphore);
}];
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
return flag;
}
I put a break point on if(error) to check if the callback gets called, it doesnt, unless I remove the semaphore.
I could give this method its own callback block or I could give the containing class a delegate and achieve what I need but I would really like to make this approach work.
The WebServicesManager is probably dispatching it's block on the same thread the semaphore is waiting on.
As #Rob is correctly mentioning in the comments, this is most likely not a good idea to do on the main thread; rather make use of the asynchronous model and not block the main thread for possibly minutes until the connection may time out under certain circumstances, freezing your UI.
You are undoubtedly deadlocking because you're using semaphore on same thread to which the web services manager (or the API that that is using) dispatches its completion handler.
If you want a rendition that avoids the deadlock scenario, but also avoids the pitfalls of blocking the main thread, you can do something like:
+ (void)getUserInformation:(nonnull void (^)(BOOL))completionHandler {
[[WebServicesManager sharedManager] getUserInformationWithCallback:^(NSInteger statusCode, NSString *response, NSDictionary *responseHeaders, id obj, NSError *error) {
if (error) {
completionHandler(false);
} else {
//Save user information
completionHandler(true);
}
}];
}
Then, rather than doing something like:
BOOL success = [YourClass getUserInformation];
if (success) {
...
}
You can instead do:
[YourClass getUserInformation:^(BOOL success) {
if (success) {
...
}
}];
// but do not try to use `success` here ... put everything
// contingent upon success inside the above completion handler

Difference between NSOperationQueue: currentQueue/new?

I'm trying to figure out what is the difference between those 2.
Does it mean currentQueue cannot be mainQueue or it's a wrong assumption?
currentQueue return mainQueue if you call it in main-thread.
new is new queue with new threads
new is initializer method which NSOperationQueue inherits from NSObject
Documentation says:
This method is a combination of alloc and init. Like alloc, it initializes the isa instance variable of the new object so it points to the class data structure. It then invokes the init method to complete the initialization process.
This means calling +new creates new instance of NSOperationQueue
currentQueue returns you the queue on which the method was called.
NSOperationQueue docs of currentQueue says:
The operation queue that started the operation or nil if the queue could not be determined
I.e. if method calling +currentQueue is mainQueue, it can return mainQueue
prove of concept write by #Cy-4AH. Hop this can clarify a bit.
-(void) viewDidLoad {
NSBlockOperation *blockOperation = [NSBlockOperation blockOperationWithBlock:^(void){
//this block will executed in a separate thread (not the main thread)
if ([NSOperationQueue currentQueue] == [NSOperationQueue mainQueue]) {
NSLog(#"= in block");
} else {
NSLog(#"not = in block"); //This will be log
}
}];
NSOperationQueue *operationQueue = [[NSOperationQueue alloc] init];
[operationQueue addOperation:blockOperation];
//this block will executed in the main thread
if ([NSOperationQueue currentQueue] == [NSOperationQueue mainQueue]) {
NSLog(#"= outside of block"); //This will be log
} else {
NSLog(#"not = outside of block");
}
}

Testing background save of Core Data entity with Kiwi

I'm struggling to figure out the best method to test interacting with Core Data in a background thread. I have the following class method:
+ (void)fetchSomeJSON
{
// Download some json then parse it in the block
[[AFHTTPClient sharedClient] fetchAllThingsWithCompletion:^(id results, NSError *error) {
if ([results count] > 0) {
NSManagedObjectContext *backgroundContext = //... create a new context for background insertion
dispatch_queue_t background = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0);
dispatch_async(background, ^{ // If I comment this out, my test runs just fine
//... insert and update some entities
for (NSString *str in results) {
NSManagedObject *object = //...
}
});
}
}];
}
I'm currently testing this method with the following Kiwi code:
describe(#"MyAction", ^{
__block void (^completionBlock)(NSArray *array, NSError *error);
beforeEach(^{
// Stub the http client
id mockClient = [AFHTTPClient mock];
[WRNAPIClient stub:#selector(sharedClient) andReturn:mockClient];
// capture the block argument
KWCaptureSpy *spy = [mockClient captureArgument:#selector(fetchAllThingsWithCompletion:) atIndex:0];
[MyClass fetchSomeJSON]; // Call the method so we can capture the block
completionBlock = spy.argument;
// run the completion block
completionBlock(#[#"blah"], nil);
})
// If I remove the dispatch_async block, this test passes fine.
// If I add it in again the test fails, probably because its not waiting
it(#"should return the right count", ^{
// entityCount is a block that performs a fetch request count
NSInteger count = entityCount(moc, #"Task");
[[theValue(count) should] equal:theValue(4)];
})
// This works fine, but obviously I don't want to wait a second
it(#"should return the right count after waiting for a second", ^{
sleep(1);
NSInteger count = entityCount(moc, #"Task");
[[theValue(count) should] equal:theValue(4)];
});
};
If I remove the dispatch_async line, then I can get my test to run quickly. The only way I can get my test suite to run when using dispatch_async is to sleep(1) after calling the completion block. Using sleep() makes me think that I'm not approaching it in the right way. I have tried using shouldEventually but this doesn't seem to re-fetch my count value.
Have you tried these asynchronous block macros?
#define TestNeedsToWaitForBlock() __block BOOL blockFinished = NO
#define BlockFinished() blockFinished = YES
#define WaitForBlock() while (CFRunLoopRunInMode(kCFRunLoopDefaultMode, 0, true) && !blockFinished)
I have tried several approaches to solving this, none feel right.
1) Move the dispatch_async to its own class
+ (void)dispatchOnMainQueue:(Block)block
{
if ([NSThread currentThread] == [NSThread mainThread]) {
block();
} else {
dispatch_sync(dispatch_get_main_queue(), block);
}
}
+ (void)dispatchOnBackgroundQueue:(Block)block
{
dispatch_queue_t background = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0);
dispatch_async(background, block);
}
Then during test execution, swizzle the background dispatch to occur on the main queue. This worked, but was unpredictable. It also felt so wrong!
2) Move the setup code to Kiwi's beforeAll block, then sleep the main thread. This works as the Kiwi tests are run on the main thread, so we're effectively saying "let the background operations happen before carrying on with the tests". I think this is what I'm going to use. Yes it makes my unit tests run slower, but they pass when they should do, and fail when they should
describe(#"MyAction", ^{
__block void (^completionBlock)(NSArray *array, NSError *error);
beforeAll(^{
// Stub the http client
id mockClient = [AFHTTPClient mock];
[WRNAPIClient stub:#selector(sharedClient) andReturn:mockClient];
// capture the block argument
KWCaptureSpy *spy = [mockClient captureArgument:#selector(fetchAllThingsWithCompletion:) atIndex:0];
[WRNTaskImporter importAllTasksFromAPI];
completionBlock = spy.argument;
// run the completion block
completionBlock(#[#"blah"], nil);
// Wait for background import to complete
[NSThread sleepForTimeInterval:0.1];
})
// This works
it(#"should return the right count", ^{
// entityCount is a block that performs a fetch request count
NSInteger count = entityCount(moc, #"Task");
[[theValue(count) should] equal:theValue(4)];
})
};
The caveat of this approach is that it only works when you aren't changing any data before a test. Say for example I insert 4 entities, and want to check each entity was inserted as expected. This option would work here. If I needed to re-run the import method and check that the count hadn't increased, I would need to add another [NSThread sleepForTimeInterval:0.1] after calling the insertion code.
For normal block based Kiwi tests you should probably use either the expectFutureValue shouldEventually method, or KWCaptureSpy to test your code, but this may not help when calling nested blocks.
If anyone has a more appropriate method for testing cases like these I'm happy to hear it!

How to timeout an asynchronous method when ran synchronously

This is essentially what I'm doing to run an asynchronous method synchronously:
This essentially works when called once, but when called multiple times, it will eventually stay inside the while loop and never get signaled. Any ideas on how to set a timer to eventually time out after sometime?
__block SomeClass *result = nil;
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW, 0UL);
dispatch_async(queue, ^{
[[SomeManager sharedInstance] someMethodWithCallback:^(id responseObject, NSError *error) {
if (!error) {
result = (SomeClass *)ResponseObject;
}
dispatch_semaphore_signal(semaphore);
}];
});
// wait with a time limit
while (dispatch_semaphore_wait(semaphore, DISPATCH_TIME_NOW)) {
[[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode beforeDate:[NSDate dateWithTimeIntervalSinceNow:0]];
}
dispatch_release(semaphore);
Thanks
That looks kind of like GCD abuse to me. ;) Are you running the run loop because this is executing on the main thread? Why not just use a dispatch_async() from your completion handler to invoke a handler on the main thread? eg:
- (void)handleDataReady: (id) results error: (NSError *) error {
// update your app
}
- (void)performAsyncUpdate {
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW, 0UL);
dispatch_async(queue, ^{
[[SomeManager sharedInstance] someMethodWithCallback:^(id responseObject, NSError *error) {
dispatch_async(dispatch_get_main_queue(), ^{
[self handleDataReady:responseObject error:error];
}];
});
}
If you really want to make it synchronous, i.e. blocking the calling thread until the operation completes then use the following pattern (of course you want to avoid blocking threads if possible)
NSCondition *waitCondtion = [NSCondition new];
__block BOOL completed = NO;
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW, 0UL);
dispatch_async(queue, ^{
[[SomeManager sharedInstance] someMethodWithCallback:^(id responseObject, NSError *error) {
if (!error) {
result = (SomeClass *)ResponseObject;
}
[waitCondtion lock];
completed = YES;
[waitCondition signal];
[waitCondition unlock];
}];
});
[waitCondtion lock];
if (!completed)
[waitCondtion wait];
[waitCondition unlock];
You can also use "waitUntilDate:" to timeout the wait after a period.
However, this pattern only works as long as the "someMethodWithCallback does not call its callback block on the same thread that is being blocked. I have copied your code because it is not obvious how "someMethodWithCallback" is implemented. Since this method is using an asynchronous pattern, then it must be doing something asynchronously therefore why are you calling it inside a dispatch_async? What thread will it call its callback block on?
You should "fill" the completion handler with whatever code you require to process the result when the completion handler finished (and also completely removing that run loop).
In order to "abort" an asynchronous operation, you should provide a cancel message which you send the asynchronous result provider.
In your case, since you have a singleton, the cancel message would have to be send like this:
[[SomeManager sharedInstance] cancel];
When the operation receives the cancel message, it should as soon as possible abort its task and call the completion handler with an appropriate NSError object indicating that it has been cancelled.
Note, that cancel messages may be asynchronous - that means, when it returns, the receiver may still execute the task.
You may achieve a "timeout" with setting up a timer, which sends the cancel message the operation, unless it has been invalidated when the operation finished.

Resources