Logistic Regression only recognizing predominant classes - machine-learning

I am participating in the Kaggle San Francisco Crime competition and i am currently trying o number of different classifiers to test benchmark performances. I am using a LogisticRegressionClassifier from sklearn, without any parameter tuning and I noticed from sklearn.metrict.classification_report that it is only predicting the predominant classses,i.e. the classes which have the highest number of occurrences in my training set.
Intuition tells me that this has to parameter tuning, but I am not sure which parameters I have to tweek in order to make the classifier more aware of less predominant classes ( LogisticRegressionClassifier has quite a few ). At the moment it is predicting only 3 classes from 38 or smth like that so it definitely needs improvement.
Any ideas?

If your model is classifying only predominant classes then you are facing problem of imbalance classes. Here are some good reads to tackle this in machine learning.
Logistic Regression is a binary classifier and uses one-vs-all or one-vs-one technique for multiclass classification, which is not good if you have higher number of output classes (33 in your case). Try using other classifier. For a start , use softmax classifier which is an extension of logistic classifier having support for multi-class classification. In scikit learn, set multi_class variable as multinomial to use softmax regression.
Other way to improve your model could be using GridSearch for parameter tuning.
On a side note, I would recommend you to use other models as well.

Related

How does RandomForestClassifier work for classification?

I have learned that Sklearn treats multi-class classification problems as a collection of binary problems. Quoting the Sklearn user guide:
In extending a binary metric to multiclass or multilabel problems, the data is treated as a collection of binary problems, one for each class.
So, binary classification models like LogisticRegression or Support vector matrices can support multi-class cases by using either One-vs-One or One-vs-Rest strategies. I wanted to know if that was the case for RandomForestClassifier too? How about other classifiers in Sklearn - are they all used as binary classifiers under the hood when dealing with a multi-class problem?
According to the documentation for Decision Trees, multi-output problems add a small change to the leaves of each tree in a random forest.
Suppose you have set criterion='gini'. In essence, each node is built by picking a subset of max_features features, calculating the average reduction in the gini impurity for all N classes and choosing the variable-threshold combination that reduces it most.
This means that random forests do not create one model for each class. Instead, it's only one model that simultaneously reduces the criterion metric for all classes in each node of every tree and predicts the most common class at each leaf.

Use categorical data as feature/target without encoding it

I am recently found a model to classify the Irish flower based on the size of its leaf. There are 3 types of flowers as a target (dependent variable). As I know, the categorical data should be encoded so that it can be used in machine learning. However, in the model the data is used directly without encoding process.
Can anyone help to explain when to use encoding? Thank you in advance!
Relevant question - encoding of continuous feature variables.
Originally, the Iris data were published by Fisher when he published his linear discriminant classifier.
Generally, a distinction is made between:
Real-value classifiers
Discrete feature classifiers
Linear discriminant analysis and quadratic discriminant analysis are real-value classifiers. Trying to add discrete variables as extra input does not work. Special procedures for working with indicator variables (the name used in statistics) in discriminant analysis have been developed. Also the k-nearest neighbour classifier really only works well with real-valued feature variables.
The naive Bayes classifier is most commonly used for classification problems with discrete features. When you don't want to assume conditional independence between the feature variables, the multinomial classifier can be applied to discrete features. A classifier service that does all this for you in one go, is insight classifiers.
Neural networks and support vector machines combine real-valued and discrete features. My advice is to use one separate input node for each discrete outcome - don't use one single input node provided with values like: (0: small, 1: minor, 2: medium, 3: larger, 4: big). One input-node-per-outcome-encoding will improve your training result and yield better test set performance.
The random forest classifier also combines real-valued and discrete features seamlessly.
Final advice is to train and test-set compare at least 4 different types of classifiers, as there is no such thing as the universal best type of classifier.

Train multi-class classifier for binary classification

If a dataset contains multi categories, e.g. 0-class, 1-class and 2-class. Now the goal is to divide new samples into 0-class or non-0-class.
One can
combine 1,2-class into a unified non-0-class and train a binary classifier,
or train a multi-class classifier to do binary classification.
How is the performance of these two approaches?
I think more categories will bring about a more accurate discriminant surface, however the weights of 1- and 2- classes are both lower than non-0-class, resulting in less samples be judged as non-0-class.
Short answer: You would have to try both and see.
Why?: It would really depend on your data and the algorithm you use (just like for many other machine learning questions..)
For many classification algorithms (e.g. SVM, Logistic Regression), even if you want to do a multi-class classification, you would have to perform a one-vs-all classification, which means you would have to treat class 1 and class 2 as the same class. Therefore, there is no point running a multi-class scenario if you just need to separate out the 0.
For algorithms such as Neural Networks, where having multiple output classes is more natural, I think training a multi-class classifier might be more beneficial if your classes 0, 1 and 2 are very distinct. However, this means you would have to choose a more complex algorithm to fit all three. But the fit would possibly be nicer. Therefore, as already mentioned, you would really have to try both approaches and use a good metric to evaluate the performance (e.g. confusion matrices, F-score, etc..)
I hope this is somewhat helpful.

Machine Learning Text Classification technique

I am new to Machine Learning.I am working on a project where the machine learning concept need to be applied.
Problem Statement:
I have large number(say 3000)key words.These need to be classified into seven fixed categories.Each category is having training data(sample keywords).I need to come with a algorithm, when a new keyword is passed to that,it should predict to which category this key word belongs to.
I am not aware of which text classification technique need to applied for this.do we have any tools that can be used.
Please help.
Thanks in advance.
This comes under linear classification. You can use naive-bayes classifier for this. Most of the ml frameworks will have an implementation for naive-bayes. ex: mahout
Yes, I would also suggest to use Naive Bayes, which is more or less the baseline classification algorithm here. On the other hand, there are obviously many other algorithms. Random forests and Support Vector Machines come to mind. See http://machinelearningmastery.com/use-random-forest-testing-179-classifiers-121-datasets/ If you use a standard toolkit, such as Weka, Rapidminer, etc. these algorithms should be available. There is also OpenNLP for Java, which comes with a maximum entropy classifier.
You could use the Word2Vec Word Cosine distance between descriptions of each your category and keywords in the dataset and then simple match each keyword to a category with the closest distance
Alternatively, you could create a training dataset from already matched to category, keywords and use any ML classifier, for example, based on artificial neural networks by using vectors of keywords Cosine distances to each category as an input to your model. But it could require a big quantity of data for training to reach good accuracy. For example, the MNIST dataset contains 70000 of the samples and it allowed me reach 99,62% model's cross validation accuracy with a simple CNN, for another dataset with only 2000 samples I was able reached only about 90% accuracy
There are many classification algorithms. Your example looks to be a text classification problems - some good classifiers to try out would be SVM and naive bayes. For SVM, liblinear and libshorttext classifiers are good options (and have been used in many industrial applcitions):
liblinear: https://www.csie.ntu.edu.tw/~cjlin/liblinear/
libshorttext:https://www.csie.ntu.edu.tw/~cjlin/libshorttext/
They are also included with ML tools such as scikit-learna and WEKA.
With classifiers, it is still some operation to build and validate a pratically useful classifier. One of the challenges is to mix
discrete (boolean and enumerable)
and continuous ('numbers')
predictive variables seamlessly. Some algorithmic preprocessing is generally necessary.
Neural networks do offer the possibility of using both types of variables. However, they require skilled data scientists to yield good results. A straight-forward option is to use an online classifier web service like Insight Classifiers to build and validate a classifier in one go. N-fold cross validation is being used there.
You can represent the presence or absence of each word in a separate column. The outcome variable is desired category.

What's the meaning of logistic regression dataset labels?

I've learned the Logistic Regression for some days, and i think the logistic regression's dataset's labels needs to be 1 or 0, is it right ?
But when i lookup the libSVM library's regression dataset, i see the label values are continues number(e.g. 1.0086,1.0089 ...), did i miss something ?
Note that the libSVM library could be used for regression problem.
Thanks so much !
Contrary to its name, logistic regression is a classification algorithm and it outputs class probability conditioned on the data point. Therefore the training set labels need to be either 0 or 1. For the dataset you mentioned, logistic regression is not a suitable algorithm.
SVM is a classification algorithm and it uses the input labels -1 or 1. It is not a probabilistic algorithm and it doesn't output class probabilities. It also can be adapted to regression.
Are you using a 3rd party library or programming this yourself? Generally the labels are used as ground truth so you can see how effective your approach was.
For example if your algo is trying to predict what a particular instance is it might output -1, the ground truth label will be +1 which means you did not successfully classify that particular instance.
Note that "regression" is a general term. To say someone will perform regression analysis doesn't necessarily tell you what algorithm they will be using, nor all of the nature of the data sets. All it really tells you is that you have a set of samples with features which you want to use to predict a single outcome value (a model for conditional probability).
One major difference between logistic regression and linear regression is that the former is usually trained on categorical, binary-labeled sample sets; while the latter is trained on real-labeled (ℝ) sample sets.
Any time your labels are real valued, it means you're probably going to use linear regression or similar, or else convert those real valued labels to categorical labels (e.g. via thresholds or bins) if you want to in fact use logistic regression. There is potentially a big difference in the quality and interpretation of your results though, if you try to convert from one such problem setup to another.
See also Regression Analysis.

Resources