Delegation pattern vs error handling in Swift - ios

I am creating a class named WeatherService that based on a location will provide the weather forecast (surprise!). There are multiple things that could go wrong here; the location is not found, weather service is not reachable, ...
The service has a method named weatherFor taking a location object as argument. It is asynchronous.
I am using Swift 2. So I have been reading about error handling in Swift 2.0 and there seems to be one way that multiple sources describe and that is a closure with ResultType with a success handler and an error handler. Should I use that? Or should I create a delegate and pass the error like many of the framework objects does such? I already have a delegate for the weather service since I need to know when it starts, when it is done etc.
The delegate protocol has methods like:
Started weather forecast search
Ended weather forecast search
But I don't know if I also should add a method in the delegate that is invoked when something bad happens inside the weather service communicating that an error occured and the weather forecast couldn't be found, or if that is bad? I guess delegates with "error methods" that are invoked isn't bad in Swift?

If you have only one other object interested in receiving notifications about progress, errors etc you can either go with a closure or delegate. It sort of depends on when and where the errors can occur. If you only need to pass on errors or state when making the weatherFor call you can use the closure solution. If errors can happen "anytime", even after - or before - getting the weather, you should use the delegate solution. Or a combination of both.
One other way of doing it is to post notifications when errors occur. This means that more than one object can listen in on updates at the same time.

Related

What happens if the `NEPacketTunnelflow` method `readPacketsWithCompletionHandler` is called multiple times?

When calling the method
- (void)readPacketsWithCompletionHandler:(void (^)(
NSArray<NSData *> *packets, NSArray<NSNumber *> *protocols))completionHandler;
the completionHandler is either called directly, in case packets are available at call time, or it is called at a later tim when packets become available.
Yet what is nowhere documented is: What happens if I call this method again before the prior set completionHandler has ever been called?
Will the new handler replace the prior set one and the prior set one won't get called at all anymore?
Are both handler scheduled and called as data arrives? And if so, will they be called in the order I passed them, in reverse order, or in random order?
Has anyone any insights on how that method is implemented?
Of course, I can make a demo project, create a test setup, and see what results I get through testing but that is very time consuming and not necessarily reliable. The problem with unspecified behavior is that it may change at will without letting anyone know. This method may behave differently on macOS and iOS, it may behave differently with every new OS release, or depending on the day of the week.
Or does the fact that nothing is documented is by intention? Do I have to interpret that as: You may call this method once and after your callback was executed, you may call it again with the same or a new callback. Everything else is undefined behavior and you cannot and should not rely on any specific behavior if use that API in a different manner.
As nobody has replied so far, I tried my best to figure it out myself. As testing is not good enough for me, here is what I did:
First I extracted the NetworkExtension framework binary from the dyld cache of macOS Big Sur using this utility.
Then I ran otool -Vt over the resulting binary file to get a disassembler dump of the binary.
My assembly skills are a bit rusty but from what I see the completionHandler is stored in a property named packetHandler, replacing any previous stored value there. Also a callback is created in that method and stored on an object obtained by calling the method interface.
When looking at the code of this created callback, it obtains the value of the packetHandler property and sets it to NULL after the value was obtained. Then it creates NSData and NSNumber objects, adds those to NSArray objects and calls the obtained handler with those arrays.
So it seems that calling the method again just replaces the previous completionHandler which is never be called in that case. So you must not rely that a scheduled handler will eventually be called at some time in the future if the tunnel is not teared down if the possibility exists that your code might replace it. Also calling the method multiple times to schedule multiple callbacks has no effect as as only the last one will be kept and eventually be called.

iOS: How to check if #selector has been called and then continue on the for loop?

I have the following code below that loops through an array. I need to check if the finish or fail selector has been called iterating to the next object in my dataArray.
for (id object in dataArray) {
[client setDidFinishSelector:#selector(getDataFinish:)];
[client setDidFailSelector:#selector(getDataFail:)];
[client getData:object];
}
In my getDataFinish method I assign values and I am trying to keep it in order. If I use the above method, the values can get out of order since the client response time can be different for each request..
I see two possible solutions, depending on what you're actually trying to do. It sounds like you're making calls to the internet, so yes you will get varied response time (or no response at all). Because of this, I would recommend using NSNotification. See this answer for more information about that.
Another option is making a flag in your code (AKA a BOOL) that you set to YES when your method has completed. Again, if you're making calls to the web I would not recommend this method as you are setting yourself up for an infinite loop if the user has no service and the BOOL never changes.
If you are still having trouble let me know and I can provide a more detailed answer.

How to replace async calls with mocks and predefined answers?

I have simple class for perform network stuff. It's a singleton and it encapsulates NSOperationQueue inside it. When class' user calls some method to getting data from network, this class creates proper instance of operation class inherited from NSOperation sets up it and adds to queue for performing. Obviously, that performing is making asynchronously in separated threads. After getting data from network NSOperation inherited object notifies my network class and it notifies interested delegates about data getting finished or error.
Question is, how can I make unit tests for checking network class' logic? Also, I don't actually want to test server side behavior. I just want to replace actual async call to server with mock and predefined answers to after test handlers' behavior. I want to check how are my classes work, not server side. I understand commonly logic for testing stuff like that but I little bit confused with using OCMock for it.
Best answer will be code example. I'm using OCUnit and OCMock in my project for unit testing.
Also any articles or github links will be perfect.
If all the asynchronous calls go through an internal method in your class, you can simply create a partial mock on your object and use stub/expect on that method. You can then call the public methods as normal and use the mock to verify that the internal method is called. Using the partial mock stops the real implementation from being called, so no network activity should occur.
As to the other half, the call-backs from the asynchronous operation, simply call the method that would be called directly from your tests, then check that your class does the right thing, either by checking its state with OCUnit asserts, or, if it in turn uses callbacks, with another mock.
So I know this is regarding OCMock... but I thought I'd put it out there that I do this successfully with Kiwi and it looks like this.
it(#"should refresh the client's temporary API key if it is stale before sending the request", ^{
ISLDataServiceAdd *addRequest = [ISLDataServiceAdd withRecord:#{ISLFieldContact_FirstName: #"Jason"} table:ISLTableContact];
[[clientMock shouldEventually] receive:#selector(apiKey) andReturn:VALID_API_KEY];
[[clientMock shouldEventually] receive:#selector(hasTemporaryAPIKey) andReturn:theValue(YES)];
[[clientMock shouldEventually] receive:#selector(isTemporaryAPIKeyStale) andReturn:theValue(YES)];
[[clientMock shouldEventually] receive:#selector(refreshTemporaryAPIKeyAndWait:)];
[addRequest sendRequestUsingClient:clientMock completion:nil failure:nil];
});
sendRequestUsingClient:completion:failure: is an asynchronous call, so by using shouldEventually with Kiwi, it knows that it needs to wait some time (default is 1 second) before those selectors will be called.

Multiple Delegates in iOS

I am making an object that goes to download stuff for all of my view controllers. The object is singleton instance and has a callback method with received data once the download is completed. It also has a delegate property so that it knows which object to call back to after the download is done.
There are multiple controllers that use this shared instance, and my question is how to call back to the correct view controller that requested the download.
My approach is to use delegation, but the problem is that since other view controllers are also its delegate, the download object could call back to every object and this will be hard to track.
I've worked on projects where people have attempted to use multiple delegates and it's basically a bad idea. The delegate pattern is about a 1 to 1 relationship between a class and it's delegate. Whilst it is possible to achieve some level of multiple delegation through switching the delegates in and out, it's more likely to lead to unpredictable behaviour and bugs.
My recommendation would be to change how you are thinking about this. You have two options as I see it:
Switch to an Observer pattern where you can register multiple observers which your main class can interact with. This is useful where your observers all implement the same protocol and where your main class wants to be aware of the observers and interaction with them.
Broadcast NSNotifications to indicate state changes and events. Here is a more decoupled approach because the main class does not need to know who is listening and does not directly interact with them. Other can start and stop being notified at their leisure. It also has the advantage that you do not need to create or implement a separate protocol. Instead you register the classes that need to know about changes with the NSNotificationCenter which in turns handles all the routing of notifications for you.
It actually sounds like the delegate pattern might not be the best approach here.
I would look into NSNotificationCenter instead.
The basic idea is that your singleton doing the net connection posts a notification (with something like postNotificationName:object:userInfo:) , saying that new data is available. Within this notification, you can pass a dictionary object (userInfo) that holds the data you've fetched, or info on what parts of your Model contain updated data.
Then, your other view controllers can register themselves to 'observe' these notifications by calling addObserver:selector:name:object:. Generally speaking, when a vc becomes visible I call addObserver, and removeObserver when it's being hidden or transitioned out.
Good luck!
Delegation doesn't seem like the right solution to this problem. How about requiring the requesting view controller to provide an object (its self) and a selector for you to call as a completion notification? Of course, you'll need a place to store that object and selector until the download completes. Hopefully you have (or could create) an object for this.
i recommend to use one of these ways
observer:
when use data that you want to inform other object are near to primitive ones.for example when you are using 'NSMutableArray' you can not inform the change in one of object by the standard implemented pattern at least you need to implement one for your self that is not reusable that much
Notification
when your interaction with destination object (those need to be inform) is in one-way.it means you don't need any acknowledge or other data back from them.
delegate
when there is one object to inform at each time step.
note:block use for success and fail is not a pattern to broadcast data its about to queue task when you don't know when they are finishing or failing like network operations
EDIT:
how to create notification | multi delegate issues and implementation
While I agree with most of the answers here, if you did actually want to achieve multiple delegates you could potentially declare an array of delegates and send messages to all delegates within that array. If your protocol has optional delegate methods you safely check using responds(to aSelector: Selector!) -> Bool before invoking (being mindful of memory management, as those delegates would be strongly referenced in the array). Again I do agree that multiple delegates is likely a bad architectural idea and using blocks or notification center would suit your needs better.
One approach, which works for me if you only have one other object to forward messages to is to create a forwardingDelegate This does not end up with issues of hard to debug ordering of delegates and it does not unnecessarily create a dependency on the other object. Keep in mind, if you have many objects then this might not be the best approach, it is mainly for one additional object but this could be extended to support an array of objects so long as there is one that receives the SDK and forwards it to the other objects [1]. Note that every method that is needed for the forwarded object needs to pass it along, even if it is not used by the forwarding object.
For example, if I need to forward the messages coming from the mapView delegate:
- (void)mapView:(MKMapView *)mapView regionDidChangeAnimated:(BOOL)animated
{
// handle this object here.
if ([self.forwardingDelegate respondsToSelector:#selector(mapView:regionDidChangeAnimated:)])
{
[self.forwardingDelegate mapView:mapView regionDidChangeAnimated:animated];
}
// or handle this object here.
}
[self.forwardingDelegate mapView:mapView regionDidChangeAnimated:animated];
The forwarding property would be declared like this.
#property (nonatomic) id<MKMapViewDelegate> forwardingDelegate;
And the other object would adopt the protocol as if it were receiving the original message.
[1] The array approach for multiple delegates may get tricky because then you don't have as much control over what order the delegates get called, as was mentioned in other posts.

Why only one delegate?

I've read that an object can only have one delegate at once.
But is that really true?
Let's say I make an object with a protocol and from that object I want to gather a lot of data from several other objects. I add every object that conforms to my protocol to an array. Then I just loop through it and call my methods on every delegate.
NSMutableArray *collectFromDelegates = [NSMutableArray alloc]init];
//in delegateArray I keep pointers to every delegate.
for(id delegate in delegateArray){
[collectFromDelegates addObject:[delegate someProtocolMethod]];
}
Is this wrong?
That's not really delegation.
Delegation is a simple and powerful pattern in which one object in a program acts on behalf of, or in coordination with, another object. The delegating object keeps a reference to the other object—the delegate—and at the appropriate time sends a message to it. The message informs the delegate of an event that the delegating object is about to handle or has just handled.
It doesn't make much sense to have more than one object handle an event for you, since it has already been handled. The only reason I could see to have multiple delegates is that if the first fails to handle an event, it can be passed to the next, continuing until some object handles it.
In your example, the objects are acting as data sources. This makes more sense than multiple delegates, but could easily be implemented by having a single data source combine data from multiple objects, which means the object asking for the data doesn't have to worry about how to combine it.
The other case where you would often want multiple objects is receiving notifications of an event. This is not delegation because the objects are not working for the object, just acting on something that happened to the object. This is better implemented using notifications or observing.
Apple's convention is to only have one "delegate" object. But you can set up your own class to have an array of delegates if that's what you need. You might want to call them something else for clarity.
In your example, calling them "dataSources" might be more appropriate.
A class only really needs one delegate, if you have more than one you are solving a different problem. The delegate pattern is used to modify the behaviour of a class. Say for instance we have a Dog class which can bark, but different types of dogs bark in different way. A delegate would be one way of changing the barking behaviour.
If you need more than one you are probably more interested in OBSERVING what your class is doing, it needs to NOTIFY others of current EVENTS. As several other classes might be interested in the behaviour of one you would need an array. In iOS SDK this is already done for you with notifications. This is called the Observer pattern.
Different use cases...
I've read that an object can only have one delegate at once. But it's that really true?
Where did you read that? No, it's not true. For instance, UITableView has two delegates, one to supply the data, the other to handle actions.
A delegate is just an abstract concept - you can have as many delegates as you want. However, this is rarely required and often a poor pattern.
Apple make good use of a source and delegate pattern. Source ivars (a form of delegate) provide data, while delegate ivars are invoked for logical responses. Perhaps this is a better solution?
Alternatively you can use NSNotification to inform many listeners of a single event.
Hope this helps!
Generally, when you want to message multiple classes that are interested in what you class does, you would use NSNotifications. That will however not allow them to return data unless you allow them to send a message to the object of the notification. I'm not sure if that would be a cleaner solution though.
One approach beside the mentioned Notifications could be, that your delegate implementation holds an array of objects conforming to the protocol and calls the protocols method on this as a wrapper.

Resources