I'm trying to create an infinite Stream in F# that contains armstrong numbers. An armstrong number is one whose cubes of its digits add up to the number. For example, 153 is an armstrong number because 1^3 + 5^3 + 3^3 = 153. so far, I have created several functions to help me do so. They are:
type 'a stream = Cons of 'a * (unit -> 'a stream);;
let rec upfrom n = Cons (n, fun() -> upfrom (n+1));;
let rec toIntArray = function
| 0 -> []
| n -> n % 10 :: toIntArray (n / 10);;
let rec makearmstrong = function
| [] -> 0
| y::ys -> (y * y * y) + makearmstrong ys;;
let checkarmstrong n = n = makearmstrong(toIntArray n);;
let rec take n (Cons(x,xsf)) =
match n with
| 0 -> []
| _ -> x :: take (n-1)(xsf());;
let rec filter p (Cons (x, xsf)) =
if p x then Cons (x, fun() -> filter p (xsf()))
else filter p (xsf());;
And finally:
let armstrongs = filter (fun n -> checkarmstrong n)(upfrom 1);;
Now, when I do take 4 armstrongs;;, (or any number less than 4) this works perfectly and gives me [1;153;370;371] but if I do take 5 armstrongs;;nothing happens, it seems like the program freezes.
I believe the issue is that there are no numbers after 407 that are the sums of their cubes (see http://oeis.org/A046197), but when your code evaluates the equivalent of take 1 (Cons(407, filter checkarmstrong (upfrom 408))) it's going to force the evaluation of the tail and filter will recurse forever, never finding a matching next element. Also note that your definition of Armstrong numbers differs from, say, Wikipedia's, which states that the power the digits are raised to should be the number of digits in the number.
Related
I'm trying to concatenate a string with a certain amount of times, but I feel like I've cheated a bit (or at least not actually understood how it's supposed to be done) by using a higher-order function:
let repeat s n =
String.replicate n s |> printfn "%s"
repeat "a" 10
Obviously gives me "aaaaaaaaaa", but how could I do this without a higher-order function? I feel like it's a very simple problem but I can't seem to wrap my head around it, the F# syntax, or way of thinking, is still troublesome for me.
If you just want a recursive solution, how about this?
let rec repeat s n =
match n with
| _ when n <= 0 -> ""
| _ -> s + (repeat s (n-1))
repeat "a" 10
or in a more "classic" style with an if-expression:
let rec repeat s n =
if n <= 0 then
""
else
s + (repeat s (n-1))
repeat "a" 10
And here's one way using list comprehension and fold, which is the go to function for recursion:
[for i in 1..10 -> "a"] |> List.fold (+) ""
Tail Recursive version
let repeat2 s n =
let rec loop acc n =
match n with
| _ when n > 0 -> loop (acc + s) (n - 1)
| _ -> acc
loop "" n
repeat "oijdfsaoijdoyasjd" 100000 // Process is terminated due to StackOverflowException.
[for i in 1..100000 -> "oijdfsaoijdoyasjd"] |> List.fold (+) "" // no stack overflow
repeat2 "oijdfsaoijdoyasjd" 100000 // no stack overflow
But prepared for massive amounts of gen2 GC and a few min. of runtime.
i want to use the functional way to count this and i want to count them efficiently so i do not want to store the sequence, just go through it and count the numbers
let conjv2 x =
let next n = match n%2 with
|0 -> n/2
|_ -> n*3+1
Seq.initInfinite next
|> Seq.takeWhile(fun n -> n > 1)
|> Seq.length
this does not work and returns 0 for any positive number, it is the 3n+1 conjecture and i am finding it really hard to count them efficiently, this code works fine but i want to do it the functional way :
let conj x =
let mutable ansa = x
let mutable cycles = 1
while ansa > 1 do
cycles <- cycles+1
ansa <- match ansa%2 with
|0 -> ansa/2
|_ -> ansa*3+1
cycles
The key problem with the sample is that you're using Seq.initInfinite instead of Seq.unfold.
Seq.initInfinite calls the specified function with the index of the element as argument (0, 1, 2, ..)
Seq.unfold calls the specified function with the state generated by the previous iteration
Note that your code also does not use the argument x and so your function ends up being 'a -> int rather than int -> int which is what you'd expect - this is a good indication that there is something wrong!
To fix this, try something like this:
let conjv2 x =
let next n = match n%2 with
|0 -> n/2
|_ -> n*3+1
Seq.unfold (fun st -> let n = next st in Some(n, n)) x
|> Seq.takeWhile(fun n -> n > 1)
|> Seq.map (fun v -> printfn "%A" v; v)
|> Seq.length
The function passed to unfold needs to return an option with the new state & a value to emit. To generate infinite sequence, we always return Some and the emitted values are the intermediate states.
This returns values that are smaller by 2 than your original conj, because conj starts with 1 (rather than 0) and it also counts the last value (while here, we stop before ansa=1). So you'll need to add 2 to the result.
I write some code to learning F#.
Here is a example:
let nextPrime list=
let rec loop n=
match n with
| _ when (list |> List.filter (fun x -> x <= ( n |> double |> sqrt |> int)) |> List.forall (fun x -> n % x <> 0)) -> n
| _ -> loop (n+1)
loop (List.max list + 1)
let rec findPrimes num=
match num with
| 1 -> [2]
| n ->
let temp = findPrimes <| n-1
(nextPrime temp ) :: temp
//find 10 primes
findPrimes 10 |> printfn "%A"
I'm very happy that it just works!
I'm totally beginner to recursion
Recursion is a wonderful thing.
I think findPrimes is not efficient.
Someone help me to refactor findPrimes to tail recursion if possible?
BTW, is there some more efficient way to find first n primes?
Regarding the first part of your question, if you want to write a recursive list building function tail-recursively you should pass the list of intermediate results as an extra parameter to the function. In your case this would be something like
let findPrimesTailRecursive num =
let rec aux acc num =
match num with
| 1 -> acc
| n -> aux ((nextPrime acc)::acc) (n-1)
aux [2] num
The recursive function aux gathers its results in an extra parameter conveniently called acc (as in acc-umulator). When you reach your ending condition, just spit out the accumulated result. I've wrapped the tail-recursive helper function in another function, so the function signature remains the same.
As you can see, the call to aux is the only, and therefore last, call to happen in the n <> 1 case. It's now tail-recursive and will compile into a while loop.
I've timed your version and mine, generating 2000 primes. My version is 16% faster, but still rather slow. For generating primes, I like to use an imperative array sieve. Not very functional, but very (very) fast.
An alternative is to use an extra continuation argument to make findPrimes tail recursive. This technique always works. It will avoid stack overflows, but probably won't make your code faster.
Also, I put your nextPrime function a little closer to the style I'd use.
let nextPrime list=
let rec loop n = if list |> List.filter (fun x -> x*x <= n)
|> List.forall (fun x -> n % x <> 0)
then n
else loop (n+1)
loop (1 + List.head list)
let rec findPrimesC num cont =
match num with
| 1 -> cont [2]
| n -> findPrimesC (n-1) (fun temp -> nextPrime temp :: temp |> cont)
let findPrimes num = findPrimesC num (fun res -> res)
findPrimes 10
As others have said, there's faster ways to generate primes.
Why not simply write:
let isPrime n =
if n<=1 then false
else
let m = int(sqrt (float(n)))
{2..m} |> Seq.forall (fun i->n%i<>0)
let findPrimes n =
{2..n} |> Seq.filter isPrime |> Seq.toList
or sieve (very fast):
let generatePrimes max=
let p = Array.create (max+1) true
let rec filter i step =
if i <= max then
p.[i] <- false
filter (i+step) step
{2..int (sqrt (float max))} |> Seq.iter (fun i->filter (i+i) i)
{2..max} |> Seq.filter (fun i->p.[i]) |> Seq.toArray
BTW, is there some more efficient way to find first n primes?
I described a fast arbitrary-size Sieve of Eratosthenes in F# here that accumulated its results into an ever-growing ResizeArray:
> let primes =
let a = ResizeArray[2]
let grow() =
let p0 = a.[a.Count-1]+1
let b = Array.create p0 true
for di in a do
let rec loop i =
if i<b.Length then
b.[i] <- false
loop(i+di)
let i0 = p0/di*di
loop(if i0<p0 then i0+di-p0 else i0-p0)
for i=0 to b.Length-1 do
if b.[i] then a.Add(p0+i)
fun n ->
while n >= a.Count do
grow()
a.[n];;
val primes : (int -> int)
I know that this is a bit late, and an answer was already accepted. However, I believe that a good step by step guide to making something tail recursive may be of interest to the OP or anyone else for that matter. Here are some tips that have certainly helped me out. I'm going to use a strait-forward example other than prime generation because, as others have stated, there are better ways to generate primes.
Consider a naive implementation of a count function that will create a list of integers counting down from some n. This version is not tail recursive so for long lists you will encounter a stack overflow exception:
let rec countDown = function
| 0 -> []
| n -> n :: countDown (n - 1)
(* ^
|... the cons operator is in the tail position
as such it is evaluated last. this drags
stack frames through subsequent recursive
calls *)
One way to fix this is to apply continuation passing style with a parameterized function:
let countDown' n =
let rec countDown n k =
match n with
| 0 -> k [] (* v--- this is continuation passing style *)
| n -> countDown (n - 1) (fun ns -> n :: k ns)
(* ^
|... the recursive call is now in tail position *)
countDown n (fun ns -> ns)
(* ^
|... and we initialize k with the identity function *)
Then, refactor this parameterized function into a specialized representation. Notice that the function countDown' is not actually counting down. This is an artifact of the way the continuation is built up when n > 0 and then evaluated when n = 0. If you have something like the first example and you can't figure out how to make it tail recursive, what I'm suggesting is that you write the second one and then try to optimize it to eliminate the function parameter k. That will certainly improve the readability. This is an optimization of the second example:
let countDown'' n =
let rec countDown n ns =
match n with
| 0 -> List.rev ns (* reverse so we are actually counting down again *)
| n -> countDown (n - 1) (n :: ns)
countDown n []
I have two snippets of code that tries to convert a float list to a Vector3 or Vector2 list. The idea is to take 2/3 elements at a time from the list and combine them as a vector. The end result is a sequence of vectors.
let rec vec3Seq floatList =
seq {
match floatList with
| x::y::z::tail -> yield Vector3(x,y,z)
yield! vec3Seq tail
| [] -> ()
| _ -> failwith "float array not multiple of 3?"
}
let rec vec2Seq floatList =
seq {
match floatList with
| x::y::tail -> yield Vector2(x,y)
yield! vec2Seq tail
| [] -> ()
| _ -> failwith "float array not multiple of 2?"
}
The code looks very similiar and yet there seems to be no way to extract a common portion. Any ideas?
Here's one approach. I'm not sure how much simpler this really is, but it does abstract some of the repeated logic out.
let rec mkSeq (|P|_|) x =
seq {
match x with
| P(p,tail) ->
yield p
yield! mkSeq (|P|_|) tail
| [] -> ()
| _ -> failwith "List length mismatch" }
let vec3Seq =
mkSeq (function
| x::y::z::tail -> Some(Vector3(x,y,z), tail)
| _ -> None)
As Rex commented, if you want this only for two cases, then you probably won't have any problem if you leave the code as it is. However, if you want to extract a common pattern, then you can write a function that splits a list into sub-list of a specified length (2 or 3 or any other number). Once you do that, you'll only use map to turn each list of the specified length into Vector.
The function for splitting list isn't available in the F# library (as far as I can tell), so you'll have to implement it yourself. It can be done roughly like this:
let divideList n list =
// 'acc' - accumulates the resulting sub-lists (reversed order)
// 'tmp' - stores values of the current sub-list (reversed order)
// 'c' - the length of 'tmp' so far
// 'list' - the remaining elements to process
let rec divideListAux acc tmp c list =
match list with
| x::xs when c = n - 1 ->
// we're adding last element to 'tmp',
// so we reverse it and add it to accumulator
divideListAux ((List.rev (x::tmp))::acc) [] 0 xs
| x::xs ->
// add one more value to 'tmp'
divideListAux acc (x::tmp) (c+1) xs
| [] when c = 0 -> List.rev acc // no more elements and empty 'tmp'
| _ -> failwithf "not multiple of %d" n // non-empty 'tmp'
divideListAux [] [] 0 list
Now, you can use this function to implement your two conversions like this:
seq { for [x; y] in floatList |> divideList 2 -> Vector2(x,y) }
seq { for [x; y; z] in floatList |> divideList 3 -> Vector3(x,y,z) }
This will give a warning, because we're using an incomplete pattern that expects that the returned lists will be of length 2 or 3 respectively, but that's correct expectation, so the code will work fine. I'm also using a brief version of sequence expression the -> does the same thing as do yield, but it can be used only in simple cases like this one.
This is simular to kvb's solution but doesn't use a partial active pattern.
let rec listToSeq convert (list:list<_>) =
seq {
if not(List.isEmpty list) then
let list, vec = convert list
yield vec
yield! listToSeq convert list
}
let vec2Seq = listToSeq (function
| x::y::tail -> tail, Vector2(x,y)
| _ -> failwith "float array not multiple of 2?")
let vec3Seq = listToSeq (function
| x::y::z::tail -> tail, Vector3(x,y,z)
| _ -> failwith "float array not multiple of 3?")
Honestly, what you have is pretty much as good as it can get, although you might be able to make a little more compact using this:
// take 3 [1 .. 5] returns ([1; 2; 3], [4; 5])
let rec take count l =
match count, l with
| 0, xs -> [], xs
| n, x::xs -> let res, xs' = take (count - 1) xs in x::res, xs'
| n, [] -> failwith "Index out of range"
// split 3 [1 .. 6] returns [[1;2;3]; [4;5;6]]
let rec split count l =
seq { match take count l with
| xs, ys -> yield xs; if ys <> [] then yield! split count ys }
let vec3Seq l = split 3 l |> Seq.map (fun [x;y;z] -> Vector3(x, y, z))
let vec2Seq l = split 2 l |> Seq.map (fun [x;y] -> Vector2(x, y))
Now the process of breaking up your lists is moved into its own generic "take" and "split" functions, its much easier to map it to your desired type.
Background:
I have a sequence of contiguous, time-stamped data. The data-sequence has gaps in it where the data is not contiguous. I want create a method to split the sequence up into a sequence of sequences so that each subsequence contains contiguous data (split the input-sequence at the gaps).
Constraints:
The return value must be a sequence of sequences to ensure that elements are only produced as needed (cannot use list/array/cacheing)
The solution must NOT be O(n^2), probably ruling out a Seq.take - Seq.skip pattern (cf. Brian's post)
Bonus points for a functionally idiomatic approach (since I want to become more proficient at functional programming), but it's not a requirement.
Method signature
let groupContiguousDataPoints (timeBetweenContiguousDataPoints : TimeSpan) (dataPointsWithHoles : seq<DateTime * float>) : (seq<seq< DateTime * float >>)= ...
On the face of it the problem looked trivial to me, but even employing Seq.pairwise, IEnumerator<_>, sequence comprehensions and yield statements, the solution eludes me. I am sure that this is because I still lack experience with combining F#-idioms, or possibly because there are some language-constructs that I have not yet been exposed to.
// Test data
let numbers = {1.0..1000.0}
let baseTime = DateTime.Now
let contiguousTimeStamps = seq { for n in numbers ->baseTime.AddMinutes(n)}
let dataWithOccationalHoles = Seq.zip contiguousTimeStamps numbers |> Seq.filter (fun (dateTime, num) -> num % 77.0 <> 0.0) // Has a gap in the data every 77 items
let timeBetweenContiguousValues = (new TimeSpan(0,1,0))
dataWithOccationalHoles |> groupContiguousDataPoints timeBetweenContiguousValues |> Seq.iteri (fun i sequence -> printfn "Group %d has %d data-points: Head: %f" i (Seq.length sequence) (snd(Seq.hd sequence)))
I think this does what you want
dataWithOccationalHoles
|> Seq.pairwise
|> Seq.map(fun ((time1,elem1),(time2,elem2)) -> if time2-time1 = timeBetweenContiguousValues then 0, ((time1,elem1),(time2,elem2)) else 1, ((time1,elem1),(time2,elem2)) )
|> Seq.scan(fun (indexres,(t1,e1),(t2,e2)) (index,((time1,elem1),(time2,elem2))) -> (index+indexres,(time1,elem1),(time2,elem2)) ) (0,(baseTime,-1.0),(baseTime,-1.0))
|> Seq.map( fun (index,(time1,elem1),(time2,elem2)) -> index,(time2,elem2) )
|> Seq.filter( fun (_,(_,elem)) -> elem <> -1.0)
|> PSeq.groupBy(fst)
|> Seq.map(snd>>Seq.map(snd))
Thanks for asking this cool question
I translated Alexey's Haskell to F#, but it's not pretty in F#, and still one element too eager.
I expect there is a better way, but I'll have to try again later.
let N = 20
let data = // produce some arbitrary data with holes
seq {
for x in 1..N do
if x % 4 <> 0 && x % 7 <> 0 then
printfn "producing %d" x
yield x
}
let rec GroupBy comp (input:LazyList<'a>) : LazyList<LazyList<'a>> =
LazyList.delayed (fun () ->
match input with
| LazyList.Nil -> LazyList.cons (LazyList.empty()) (LazyList.empty())
| LazyList.Cons(x,LazyList.Nil) ->
LazyList.cons (LazyList.cons x (LazyList.empty())) (LazyList.empty())
| LazyList.Cons(x,(LazyList.Cons(y,_) as xs)) ->
let groups = GroupBy comp xs
if comp x y then
LazyList.consf
(LazyList.consf x (fun () ->
let (LazyList.Cons(firstGroup,_)) = groups
firstGroup))
(fun () ->
let (LazyList.Cons(_,otherGroups)) = groups
otherGroups)
else
LazyList.cons (LazyList.cons x (LazyList.empty())) groups)
let result = data |> LazyList.of_seq |> GroupBy (fun x y -> y = x + 1)
printfn "Consuming..."
for group in result do
printfn "about to do a group"
for x in group do
printfn " %d" x
You seem to want a function that has signature
(`a -> bool) -> seq<'a> -> seq<seq<'a>>
I.e. a function and a sequence, then break up the input sequence into a sequence of sequences based on the result of the function.
Caching the values into a collection that implements IEnumerable would likely be simplest (albeit not exactly purist, but avoiding iterating the input multiple times. It will lose much of the laziness of the input):
let groupBy (fun: 'a -> bool) (input: seq) =
seq {
let cache = ref (new System.Collections.Generic.List())
for e in input do
(!cache).Add(e)
if not (fun e) then
yield !cache
cache := new System.Collections.Generic.List()
if cache.Length > 0 then
yield !cache
}
An alternative implementation could pass cache collection (as seq<'a>) to the function so it can see multiple elements to chose the break points.
A Haskell solution, because I don't know F# syntax well, but it should be easy enough to translate:
type TimeStamp = Integer -- ticks
type TimeSpan = Integer -- difference between TimeStamps
groupContiguousDataPoints :: TimeSpan -> [(TimeStamp, a)] -> [[(TimeStamp, a)]]
There is a function groupBy :: (a -> a -> Bool) -> [a] -> [[a]] in the Prelude:
The group function takes a list and returns a list of lists such that the concatenation of the result is equal to the argument. Moreover, each sublist in the result contains only equal elements. For example,
group "Mississippi" = ["M","i","ss","i","ss","i","pp","i"]
It is a special case of groupBy, which allows the programmer to supply their own equality test.
It isn't quite what we want, because it compares each element in the list with the first element of the current group, and we need to compare consecutive elements. If we had such a function groupBy1, we could write groupContiguousDataPoints easily:
groupContiguousDataPoints maxTimeDiff list = groupBy1 (\(t1, _) (t2, _) -> t2 - t1 <= maxTimeDiff) list
So let's write it!
groupBy1 :: (a -> a -> Bool) -> [a] -> [[a]]
groupBy1 _ [] = [[]]
groupBy1 _ [x] = [[x]]
groupBy1 comp (x : xs#(y : _))
| comp x y = (x : firstGroup) : otherGroups
| otherwise = [x] : groups
where groups#(firstGroup : otherGroups) = groupBy1 comp xs
UPDATE: it looks like F# doesn't let you pattern match on seq, so it isn't too easy to translate after all. However, this thread on HubFS shows a way to pattern match sequences by converting them to LazyList when needed.
UPDATE2: Haskell lists are lazy and generated as needed, so they correspond to F#'s LazyList (not to seq, because the generated data is cached (and garbage collected, of course, if you no longer hold a reference to it)).
(EDIT: This suffers from a similar problem to Brian's solution, in that iterating the outer sequence without iterating over each inner sequence will mess things up badly!)
Here's a solution that nests sequence expressions. The imperitave nature of .NET's IEnumerable<T> is pretty apparent here, which makes it a bit harder to write idiomatic F# code for this problem, but hopefully it's still clear what's going on.
let groupBy cmp (sq:seq<_>) =
let en = sq.GetEnumerator()
let rec partitions (first:option<_>) =
seq {
match first with
| Some first' -> //'
(* The following value is always overwritten;
it represents the first element of the next subsequence to output, if any *)
let next = ref None
(* This function generates a subsequence to output,
setting next appropriately as it goes *)
let rec iter item =
seq {
yield item
if (en.MoveNext()) then
let curr = en.Current
if (cmp item curr) then
yield! iter curr
else // consumed one too many - pass it on as the start of the next sequence
next := Some curr
else
next := None
}
yield iter first' (* ' generate the first sequence *)
yield! partitions !next (* recursively generate all remaining sequences *)
| None -> () // return an empty sequence if there are no more values
}
let first = if en.MoveNext() then Some en.Current else None
partitions first
let groupContiguousDataPoints (time:TimeSpan) : (seq<DateTime*_> -> _) =
groupBy (fun (t,_) (t',_) -> t' - t <= time)
Okay, trying again. Achieving the optimal amount of laziness turns out to be a bit difficult in F#... On the bright side, this is somewhat more functional than my last attempt, in that it doesn't use any ref cells.
let groupBy cmp (sq:seq<_>) =
let en = sq.GetEnumerator()
let next() = if en.MoveNext() then Some en.Current else None
(* this function returns a pair containing the first sequence and a lazy option indicating the first element in the next sequence (if any) *)
let rec seqStartingWith start =
match next() with
| Some y when cmp start y ->
let rest_next = lazy seqStartingWith y // delay evaluation until forced - stores the rest of this sequence and the start of the next one as a pair
seq { yield start; yield! fst (Lazy.force rest_next) },
lazy Lazy.force (snd (Lazy.force rest_next))
| next -> seq { yield start }, lazy next
let rec iter start =
seq {
match (Lazy.force start) with
| None -> ()
| Some start ->
let (first,next) = seqStartingWith start
yield first
yield! iter next
}
Seq.cache (iter (lazy next()))
Below is some code that does what I think you want. It is not idiomatic F#.
(It may be similar to Brian's answer, though I can't tell because I'm not familiar with the LazyList semantics.)
But it doesn't exactly match your test specification: Seq.length enumerates its entire input. Your "test code" calls Seq.length and then calls Seq.hd. That will generate an enumerator twice, and since there is no caching, things get messed up. I'm not sure if there is any clean way to allow multiple enumerators without caching. Frankly, seq<seq<'a>> may not be the best data structure for this problem.
Anyway, here's the code:
type State<'a> = Unstarted | InnerOkay of 'a | NeedNewInner of 'a | Finished
// f() = true means the neighbors should be kept together
// f() = false means they should be split
let split_up (f : 'a -> 'a -> bool) (input : seq<'a>) =
// simple unfold that assumes f captured a mutable variable
let iter f = Seq.unfold (fun _ ->
match f() with
| Some(x) -> Some(x,())
| None -> None) ()
seq {
let state = ref (Unstarted)
use ie = input.GetEnumerator()
let innerMoveNext() =
match !state with
| Unstarted ->
if ie.MoveNext()
then let cur = ie.Current
state := InnerOkay(cur); Some(cur)
else state := Finished; None
| InnerOkay(last) ->
if ie.MoveNext()
then let cur = ie.Current
if f last cur
then state := InnerOkay(cur); Some(cur)
else state := NeedNewInner(cur); None
else state := Finished; None
| NeedNewInner(last) -> state := InnerOkay(last); Some(last)
| Finished -> None
let outerMoveNext() =
match !state with
| Unstarted | NeedNewInner(_) -> Some(iter innerMoveNext)
| InnerOkay(_) -> failwith "Move to next inner seq when current is active: undefined behavior."
| Finished -> None
yield! iter outerMoveNext }
open System
let groupContigs (contigTime : TimeSpan) (holey : seq<DateTime * int>) =
split_up (fun (t1,_) (t2,_) -> (t2 - t1) <= contigTime) holey
// Test data
let numbers = {1 .. 15}
let contiguousTimeStamps =
let baseTime = DateTime.Now
seq { for n in numbers -> baseTime.AddMinutes(float n)}
let holeyData =
Seq.zip contiguousTimeStamps numbers
|> Seq.filter (fun (dateTime, num) -> num % 7 <> 0)
let grouped_data = groupContigs (new TimeSpan(0,1,0)) holeyData
printfn "Consuming..."
for group in grouped_data do
printfn "about to do a group"
for x in group do
printfn " %A" x
Ok, here's an answer I'm not unhappy with.
(EDIT: I am unhappy - it's wrong! No time to try to fix right now though.)
It uses a bit of imperative state, but it is not too difficult to follow (provided you recall that '!' is the F# dereference operator, and not 'not'). It is as lazy as possible, and takes a seq as input and returns a seq of seqs as output.
let N = 20
let data = // produce some arbitrary data with holes
seq {
for x in 1..N do
if x % 4 <> 0 && x % 7 <> 0 then
printfn "producing %d" x
yield x
}
let rec GroupBy comp (input:seq<_>) = seq {
let doneWithThisGroup = ref false
let areMore = ref true
use e = input.GetEnumerator()
let Next() = areMore := e.MoveNext(); !areMore
// deal with length 0 or 1, seed 'prev'
if not(e.MoveNext()) then () else
let prev = ref e.Current
while !areMore do
yield seq {
while not(!doneWithThisGroup) do
if Next() then
let next = e.Current
doneWithThisGroup := not(comp !prev next)
yield !prev
prev := next
else
// end of list, yield final value
yield !prev
doneWithThisGroup := true }
doneWithThisGroup := false }
let result = data |> GroupBy (fun x y -> y = x + 1)
printfn "Consuming..."
for group in result do
printfn "about to do a group"
for x in group do
printfn " %d" x