Docker container with HBA card - docker

How can i attach a HBA card (which is on my physical server running on centos 7) to a docker container? As I'm doing POC for migration to docker from existing environment this is much needed. It's similar to direct IO in VMware ESXi(Attaching a physical hba to VM can be done via Direct I/O).

Docker isn't a hypervisor, containers aren't VMs, and "attaching devices" to a container doesn't necessarily make sense -- a container is just a process running on your host.
You can expose a device node in /dev to a container using the --device flag to docker run, although exposing a block device inside a container usually leads to other complications (e.g., a normal container can't mount filesystems, so you would need to run it with --privileged, which may or may not be acceptable form a security perspective depending on your environment).
For storage, it is more common to mount devices on the host, and then expose those filesystems to container as Docker volumes (-v /host/path:/container/path).

Related

Why minikube runs as a container itself?

While playing around with Docker and orchestration (kubernetes) I had to install and use minikube to create a simple sandbox environment. At the beginning I thought that minikube installs some kind of VM and run the "minified" kubernetes environment inside the same, however, after the installation listing my local Docker running containers I found minikube running as a container!!
Why minikube itself run as a Docker container? and how can it runs other containers?
Experimental Docker support looks to have been added in minikube 1.7.0, and started becoming the default runtime in minikube 1.9.0. As I'm writing this, current is 1.15.1.
The minikube documentation on the "docker" driver notes, particularly on a native-Linux host, there is not an intermediate virtual machine: if you can run Kubernetes in a container, it can use the entire host system's resources without special configuration or partitioning. The previous minikube-on-VirtualBox installation required preallocating memory and disk to the VM, and it was easy to get those settings wrong. Even on non-Linux hosts, if you're running Docker Desktop, sharing its hidden Linux VM can improve resource utilization, and you don't need to decide to allocate exactly 2 GB RAM to Docker Desktop and exactly 4 GB to the minikube VM.
For a long time it's been possible, but discouraged, to run a separate Docker daemon inside a Docker container; similarly, it's possible, but usually discouraged, to run a multi-process init system in a container. If you do both of these things then you can have the core Kubernetes components (etcd, apiserver, kubelet, ...) inside a single container pretending to be a Kubernetes node. It also helps here that Kubernetes already knows how to pull Docker images, which minimizes some of the confusing issues with running Docker in Docker.

I'm still confused by Docker containers and images

I know that containers are a form of isolation between the app and the host (the managed running process). I also know that container images are basically the package for the runtime environment (hopefully I got that correct). What's confusing to me is when they say that a Docker image doesn't retain state. So if I create a Docker image with a database (like PostgreSQL), wouldn't all the data get wiped out when I stop the container and restart? Why would I use a database in a Docker container?
It's also difficult for me to grasp LXC. On another question page I see:
LinuX Containers (LXC) is an operating system-level virtualization
method for running multiple isolated Linux systems (containers) on a
single control host (LXC host)
What does that exactly mean? Does it mean I can have multiple versions of Linux running on the same host as long as the host support LXC? What else is there to it?
LXC and Docker, Both are completely different. But we say both are container holders.
There are two types of Containers,
1.Application Containers: Whose main motto is to provide application dependencies. These are Docker Containers (Light Weight Containers). They run as a process in your host and gets all the things done you want. They literally don't need any OS Image/ Boot Up thing. They come and they go in a matter of seconds. You cannot run multiple process/services inside a docker container. If you want, you can do run multiple process inside a docker container, but it is laborious. Here, resources (CPU, Disk, Memory, RAM) will be shared.
2.System Containers: These are fat Containers, means they are heavy, they need OS Images
to launch themselves, at the same time they are not as heavy as Virtual Machines, They are very similar to VM's but differ in architecture a bit.
In this, Let us say Ubuntu as a Host Machine, if you have LXC installed and configured in your ubuntu host, You can run a Centos Container, a Ubuntu(with Differnet Version), a RHEL, a Fedora and any linux flavour on top of a Ubuntu Host. You can also run multiple process inside an LXC contianer. Here also resoucre sharing will be done.
So, If you have a huge application running in one LXC Container, it requires more resources, simultaneously if you have another application running inside another LXC container which require less resources. The Container with less requirement will share the resources with the container with more resource requirement.
Answering Your Question:
So if I create a Docker image with a database (like PostgreSQL), wouldn't all the data get wiped out when I stop the container and restart?
You won't create a database docker image with some data to it(This is not recommended).
You run/create a container from an image and you attach/mount data to it.
So, when you stop/restart a container, data will never gets lost if you attach that data to a volume as this volume resides somewhere other than the docker container (May be a NFS Server or Host itself).
Does it mean I can have multiple versions of Linux running on the same host as long as the host support LXC? What else is there to it?
Yes, You can do this. We are running LXC Containers in our production.

How docker allocate memory to the process in container?

Docker first initializes a container and then execute the program you want. I wonder how docker manages the memory address of container and the program in it.
Docker does not allocate memory, it's the OS that manages the resources used by programs. Docker (internally) uses cgroups which is a kernel service. The reason that ps command (on the host) won't show up processes running in a container, is that containers run in different cgroups which are isolated from each other.
Rather than worrying about the docker memory, you would need to look at the underlying host (VM/instance) where you are running the docker container. The number of containers is determined by a number of factors including what your app is that runs on the container.
See here for the limits that you can run into Is there a maximum number of containers running on a Docker host?

Sensu-Client inside Docker container

I created a customize Docker image based on ubuntu 14.04 with the Sensu-Client package inside.
Everything's went fine but now I'm wondering how can I trigger the checks to run from the hosts machine.
For example, I want to be able to check the processes that are running on the host machine and not only the ones running inside the container.
Thanks
It depends on what checks you want to run. A lot of system-level checks work fine if you run sensu container with --net=host and --privileged flags.
--net=host not just allows you to see the same hostname and IP as host system, but also all the tcp connections and interface metric will match for container and host.
--privileged gives container full access to system metrics like hdd, memory, cpu.
Tricky thing is checking external process metrics, as docker isolates it even from privileged container, but you can share host's root filesystem as docker volume ( -v /:/host) and patch check to use chroot or use /host/proc instead of /proc.
Long story short, some checks will just work, for others you need to patch or develop your own way, but sensu in docker is one possible way.
an unprivileged docker container cannot check processes outside of it's container because docker uses kernel namespaces to isolate it from all other processes running on the host. This is by design: docker security documentation
If you would like to run a super privileged docker container that has this namespace disabled you can run:
docker run -it --rm --privileged --pid=host alpine /bin/sh
Doing so removes an important security layer that docker provides and should be avoided if possible. Once in the container, try running ps auxf and you will see all processes on the host.
I don't think this is possible right now.
If the processes in the host instance are running inside docker, you can mount the socket and get the status from the sensu container
Add a sensu-client to the host machine? You might want to split it out so you have granulation between problems in the containers VS problems with your hosts
Else - You would have to set up some way to report from the inside - Either using something low level (system calls etc) or set up something from outside to catch the the calls and report back status.
HTHs
Most if not all sensu plugins hardcode the path to the proc files. One option is to mount the host proc files to a different path inside of the docker container and modify the sensu plugins to support this other location.
This is my base docker container that supports modifying the sensu plugins proc file location.
https://github.com/sstarcher/docker-sensu

Sharing the host OS or sharing the Container OS

When running an Ubuntu Docker container on Mac or other OS host,
is the UBunto OS really running in the container or is it some kind of a virtual interface?
From my understanding containers share the OS, I just need to understand if it is the OS from the host or it really is a operation system within the container?
If a Docker container is some kind of a virtual interface to the host like; Docker Containe:
http is served from the host
File and folders is served from the host
Then a Docker Container could run on any host OS as long as the interface is there, right?
Thanks for any input
Ok, this is from the documentation - I missed it, reading it the first time:
How does a container work?
A container consists of an operating system, user-added files, and meta-data. As we've seen, each container is built from an image. That image tells Docker what the container holds, what process to run when the container is launched, and a variety of other configuration data. The Docker image is read-only. When Docker runs a container from an image, it adds a read-write layer on top of the image (using a union file system as we saw earlier) in which your application can then run.

Resources