I have set of 2000 plane images similar to image below. Plane has different angle on every image. Image size is 512x512 and in every image is always this same plane.
My goal is to find angle on image which is not in test set.
So far I tried:
Harris corner detection, but in every image Harris gives me differnt
amount of points, event for images with very similar position.
Hough Lines Transform to find the longest line and get inclination to the axis X.
Corelation - this method gives the best results, but it take really long time and angels are only rough.
Neural network
Back porpagation to train image from Harris points and hough lines transform, but without any success.
I so 3D object in STP file, but I have no idea how to use it, to solve my problem.
It would be nice to get any sugestion of method, article or example.
In my experience, a convolutional neural network (CNN) will help you a great deal here. The performance will be great at detecting angles.
But here is the problem, depending of how you define the output to be and the number of layers (no more than three should be enough), the training can be very costly. For example, you could have one single output that could give you a real number which indicates the angle. Training this should be costly, but it is normal in CNNs. However, if you say you want to have 360 outputs (one for each angle in a 360 degree system), in that case the training will be a very painful and unpleasant long experience; the performance could be better, but not significantly.
(I wanted to write this as a comment to your question first, but I don't have enough reputation to do that yet, sorry.)
Related
For a drone contest, I need to do image processing with openCV to detect an “H” (for a helicopter landing pad). I have tried some classical algorithms, but the result is not satisfying.
SIFT (and SURF): all the angles are the same (90 degrees) so even if it finds to “H”, it is mistaken about the orientation.
matchTemplate: it is quite good, but it is not rotation and size invariant. So I need to make too many tests with different sizes and different orientations.
Hough Line Transform: when the drone is too far from the target or too close to it, it doesn’t detect the same lines because of their thickness.
Machine Learning for OCR: I ignore how to make it learn accurately because the template I am searching for is unique.
Can someone give me some advices please? :)
EDIT: Here is the "H" we need to detect:
The best approach for recognising a helipad is to train a Haar classifier, and then run it on:
original image
Images rotated by plus and minus 22, 45, 68 ,90 degrees
A Haar classifier is trained by adding small rotations, so the above angles should be good enough to cover all rotations of the helipad in an image. another approach is to train multiple classifiers for different rotations; this is more common because Haar classifiers give up with the earliest evidence, and it is fast to run multiple classifiers than rotate a high resolution image.
One can also try template matching with rotations, but that will need a much larger number of rotations.
I've been working on a project for some time, to detect and track (moving) vehicles in video captured from UAV's, currently I am using an SVM trained on bag-of-feature representations of local features extracted from vehicle and background images. I am then using a sliding window detection approach to try and localise vehicles in the images, which I would then like to track. The problem is that this approach is far to slow and my detector isn't as reliable as I would like so I'm getting quite a few false positives.
So I have been considering attempting to segment the cars from the background to find the approximate position so to reduce the search space before applying my classifier, but I am not sure how to go about this, and was hoping someone could help?
Additionally, I have been reading about motion segmentation with layers, using optical flow to segment the frame by flow model, does anyone have any experience with this method, if so could you offer some input to as whether you think this method would be applicable for my problem.
Below is two frames from a sample video
frame 0:
frame 5:
Assumimg your cars are moving, you could try to estimate the ground plane (road).
You may get a descent ground plane estimate by extracting features (SURF rather than SIFT, for speed), matching them over frame pairs, and solving for a homography using RANSAC, since plane in 3d moves according to a homography between two camera frames.
Once you have your ground plane you can identify the cars by looking at clusters of pixels that don't move according to the estimated homography.
A more sophisticated approach would be to do Structure from Motion on the terrain. This only presupposes that it is rigid, and not that it it planar.
Update
I was wondering if you could expand on how you would go about looking for clusters of pixels that don't move according to the estimated homography?
Sure. Say I and K are two video frames and H is the homography mapping features in I to features in K. First you warp I onto K according to H, i.e. you compute the warped image Iw as Iw( [x y]' )=I( inv(H)[x y]' ) (roughly Matlab notation). Then you look at the squared or absolute difference image Diff=(Iw-K)*(Iw-K). Image content that moves according to the homography H should give small differences (assuming constant illumination and exposure between the images). Image content that violates H such as moving cars should stand out.
For clustering high-error pixel groups in Diff I would start with simple thresholding ("every pixel difference in Diff larger than X is relevant", maybe using an adaptive threshold). The thresholded image can be cleaned up with morphological operations (dilation, erosion) and clustered with connected components. This may be too simplistic, but its easy to implement for a first try, and it should be fast. For something more fancy look at Clustering in Wikipedia. A 2D Gaussian Mixture Model may be interesting; when you initialize it with the detection result from the previous frame it should be pretty fast.
I did a little experiment with the two frames you provided, and I have to say I am somewhat surprised myself how well it works. :-) Left image: Difference (color coded) between the two frames you posted. Right image: Difference between the frames after matching them with a homography. The remaining differences clearly are the moving cars, and they are sufficiently strong for simple thresholding.
Thinking of the approach you currently use, it may be intersting combining it with my proposal:
You could try to learn and classify the cars in the difference image D instead of the original image. This would amount to learning what a car motion pattern looks like rather than what a car looks like, which could be more reliable.
You could get rid of the expensive window search and run the classifier only on regions of D with sufficiently high value.
Some additional remarks:
In theory, the cars should even stand out if they are not moving since they are not flat, but given your distance to the scene and camera resolution this effect may be too subtle.
You can replace the feature extraction / matching part of my proposal with Optical Flow, if you like. This amounts to identifying flow vectors that "stick out" from a consistent frame-to-frame motion of the ground. It may be prone to outliers in the optical flow, however. You can also try to get the homography from the flow vectors.
This is important: Regardless of which method you use, once you have found cars in one frame you should use this information to robustify your search of these cars in consecutive frame, giving a higher likelyhood to detections close to the old ones (Kalman filter, etc). That's what tracking is all about!
If the number of cars in your field of view always remain the same but move around then you can use optical flow...it will give you good results against a still background...if the number of cars are changing then you need to call goodFeaturestoTrack function in OpenCV after certain number of frames and again track the cars using optical flow.
You can use background modelling to model the background and hence the cars are always your foreground.The simplest example is frame differentiation...subtract the previous frame current frame. diff(x,y,k) = I(x,y,k) - I(x,y,k-1) .As your cars are moving in each frame you will get their position..
Both the process will work fine since you have a still background I presume..check this link to find what Optical flow can do.
I am totally new to camera calibration techniques... I am using OpenCV chessboard technique... I am using a webcam from Quantum...
Here are my observations and steps..
I have kept each chess square side = 3.5 cm. It is a 7 x 5 chessboard with 6 x 4 internal corners. I am taking total of 10 images in different views/poses at a distance of 1 to 1.5 m from the webcam.
I am following the C code in Learning OpenCV by Bradski for the calibration.
my code for calibration is
cvCalibrateCamera2(object_points,image_points,point_counts,cvSize(640,480),intrinsic_matrix,distortion_coeffs,NULL,NULL,CV_CALIB_FIX_ASPECT_RATIO);
Before calling this function I am making the first and 2nd element along the diagonal of the intrinsic matrix as one to keep the ratio of focal lengths constant and using CV_CALIB_FIX_ASPECT_RATIO
With the change in distance of the chess board the fx and fy are changing with fx:fy almost equal to 1. there are cx and cy values in order of 200 to 400. the fx and fy are in the order of 300 - 700 when I change the distance.
Presently I have put all the distortion coefficients to zero because I did not get good result including distortion coefficients. My original image looked handsome than the undistorted one!!
Am I doing the calibration correctly?. Should I use any other option than CV_CALIB_FIX_ASPECT_RATIO?. If yes, which one?
Hmm, are you looking for "handsome" or "accurate"?
Camera calibration is one of the very few subjects in computer vision where accuracy can be directly quantified in physical terms, and verified by a physical experiment. And the usual lesson is that (a) your numbers are just as good as the effort (and money) you put into them, and (b) real accuracy (as opposed to imagined) is expensive, so you should figure out in advance what your application really requires in the way of precision.
If you look up the geometrical specs of even very cheap lens/sensor combinations (in the megapixel range and above), it becomes readily apparent that sub-sub-mm calibration accuracy is theoretically achievable within a table-top volume of space. Just work out (from the spec sheet of your camera's sensor) the solid angle spanned by one pixel - you'll be dazzled by the spatial resolution you have within reach of your wallet. However, actually achieving REPEATABLY something near that theoretical accuracy takes work.
Here are some recommendations (from personal experience) for getting a good calibration experience with home-grown equipment.
If your method uses a flat target ("checkerboard" or similar), manufacture a good one. Choose a very flat backing (for the size you mention window glass 5 mm thick or more is excellent, though obviously fragile). Verify its flatness against another edge (or, better, a laser beam). Print the pattern on thick-stock paper that won't stretch too easily. Lay it after printing on the backing before gluing and verify that the square sides are indeed very nearly orthogonal. Cheap ink-jet or laser printers are not designed for rigorous geometrical accuracy, do not trust them blindly. Best practice is to use a professional print shop (even a Kinko's will do a much better job than most home printers). Then attach the pattern very carefully to the backing, using spray-on glue and slowly wiping with soft cloth to avoid bubbles and stretching. Wait for a day or longer for the glue to cure and the glue-paper stress to reach its long-term steady state. Finally measure the corner positions with a good caliper and a magnifier. You may get away with one single number for the "average" square size, but it must be an average of actual measurements, not of hopes-n-prayers. Best practice is to actually use a table of measured positions.
Watch your temperature and humidity changes: paper adsorbs water from the air, the backing dilates and contracts. It is amazing how many articles you can find that report sub-millimeter calibration accuracies without quoting the environment conditions (or the target response to them). Needless to say, they are mostly crap. The lower temperature dilation coefficient of glass compared to common sheet metal is another reason for preferring the former as a backing.
Needless to say, you must disable the auto-focus feature of your camera, if it has one: focusing physically moves one or more pieces of glass inside your lens, thus changing (slightly) the field of view and (usually by a lot) the lens distortion and the principal point.
Place the camera on a stable mount that won't vibrate easily. Focus (and f-stop the lens, if it has an iris) as is needed for the application (not the calibration - the calibration procedure and target must be designed for the app's needs, not the other way around). Do not even think of touching camera or lens afterwards. If at all possible, avoid "complex" lenses - e.g. zoom lenses or very wide angle ones. For example, anamorphic lenses require models much more complex than stock OpenCV makes available.
Take lots of measurements and pictures. You want hundreds of measurements (corners) per image, and tens of images. Where data is concerned, the more the merrier. A 10x10 checkerboard is the absolute minimum I would consider. I normally worked at 20x20.
Span the calibration volume when taking pictures. Ideally you want your measurements to be uniformly distributed in the volume of space you will be working with. Most importantly, make sure to angle the target significantly with respect to the focal axis in some of the pictures - to calibrate the focal length you need to "see" some real perspective foreshortening. For best results use a repeatable mechanical jig to move the target. A good one is a one-axis turntable, which will give you an excellent prior model for the motion of the target.
Minimize vibrations and associated motion blur when taking photos.
Use good lighting. Really. It's amazing how often I see people realize late in the game that you need a generous supply of photons to calibrate a camera :-) Use diffuse ambient lighting, and bounce it off white cards on both sides of the field of view.
Watch what your corner extraction code is doing. Draw the detected corner positions on top of the images (in Matlab or Octave, for example), and judge their quality. Removing outliers early using tight thresholds is better than trusting the robustifier in your bundle adjustment code.
Constrain your model if you can. For example, don't try to estimate the principal point if you don't have a good reason to believe that your lens is significantly off-center w.r.t the image, just fix it at the image center on your first attempt. The principal point location is usually poorly observed, because it is inherently confused with the center of the nonlinear distortion and by the component parallel to the image plane of the target-to-camera's translation. Getting it right requires a carefully designed procedure that yields three or more independent vanishing points of the scene and a very good bracketing of the nonlinear distortion. Similarly, unless you have reason to suspect that the lens focal axis is really tilted w.r.t. the sensor plane, fix at zero the (1,2) component of the camera matrix. Generally speaking, use the simplest model that satisfies your measurements and your application needs (that's Ockam's razor for you).
When you have a calibration solution from your optimizer with low enough RMS error (a few tenths of a pixel, typically, see also Josh's answer below), plot the XY pattern of the residual errors (predicted_xy - measured_xy for each corner in all images) and see if it's a round-ish cloud centered at (0, 0). "Clumps" of outliers or non-roundness of the cloud of residuals are screaming alarm bells that something is very wrong - likely outliers due to bad corner detection or matching, or an inappropriate lens distortion model.
Take extra images to verify the accuracy of the solution - use them to verify that the lens distortion is actually removed, and that the planar homography predicted by the calibrated model actually matches the one recovered from the measured corners.
This is a rather late answer, but for people coming to this from Google:
The correct way to check calibration accuracy is to use the reprojection error provided by OpenCV. I'm not sure why this wasn't mentioned anywhere in the answer or comments, you don't need to calculate this by hand - it's the return value of calibrateCamera. In Python it's the first return value (followed by the camera matrix, etc).
The reprojection error is the RMS error between where the points would be projected using the intrinsic coefficients and where they are in the real image. Typically you should expect an RMS error of less than 0.5px - I can routinely get around 0.1px with machine vision cameras. The reprojection error is used in many computer vision papers, there isn't a significantly easier or more accurate way to determine how good your calibration is.
Unless you have a stereo system, you can only work out where something is in 3D space up to a ray, rather than a point. However, as one can work out the pose of each planar calibration image, it's possible to work out where each chessboard corner should fall on the image sensor. The calibration process (more or less) attempts to work out where these rays fall and minimises the error over all the different calibration images. In Zhang's original paper, and subsequent evaluations, around 10-15 images seems to be sufficient; at this point the error doesn't decrease significantly with the addition of more images.
Other software packages like Matlab will give you error estimates for each individual intrinsic, e.g. focal length, centre of projection. I've been unable to make OpenCV spit out that information, but maybe it's in there somewhere. Camera calibration is now native in Matlab 2014a, but you can still get hold of the camera calibration toolbox which is extremely popular with computer vision users.
http://www.vision.caltech.edu/bouguetj/calib_doc/
Visual inspection is necessary, but not sufficient when dealing with your results. The simplest thing to look for is that straight lines in the world become straight in your undistorted images. Beyond that, it's impossible to really be sure if your cameras are calibrated well just by looking at the output images.
The routine provided by Francesco is good, follow that. I use a shelf board as my plane, with the pattern printed on poster paper. Make sure the images are well exposed - avoid specular reflection! I use a standard 8x6 pattern, I've tried denser patterns but I haven't seen such an improvement in accuracy that it makes a difference.
I think this answer should be sufficient for most people wanting to calibrate a camera - realistically unless you're trying to calibrate something exotic like a Fisheye or you're doing it for educational reasons, OpenCV/Matlab is all you need. Zhang's method is considered good enough that virtually everyone in computer vision research uses it, and most of them either use Bouguet's toolbox or OpenCV.
I'm trying to understand Viola Jones method, and I've mostly got it.
It uses simple Haar like features boosted into strong classifiers and organized into layers /cascade in order to accomplish better performances (not bother with obvious 'non object' regions).
I think I understand integral image and I understand how are computed values for the features.
The only thing I can't figure out is how is algorithm dealing with the face size variations.
As far as I know they use 24x24 subwindow that slides over the image, and within it algorithm goes through classifiers and tries to figure out is there a face/object on it, or not.
And my question is - what if one face is 10x10 size, and other 100x100? What happens then?
And I'm dying to know what are these first two features (in first layer of the cascade), how do they look like (keeping in mind that these two features, acording to Viola&Jones, will almost never miss a face, and will eliminate 60% of the incorrect ones) ? How??
And, how is possible to construct these features to work with these statistics for different face sizes in image?
Am I missing something, or maybe I've figured it all wrong?
If I'm not clear enough, I'll try to explain better my confusion.
Training
The Viola-Jones classifier is trained on 24*24 images. Each of the face images contains a similarly scaled face. This produces a set of feature detectors built out of two, three, or four rectangles optimised for a particular sized face.
Face size
Different face sizes are detected by repeating the classification at different scales. The original paper notes that good results are obtained by trying different scales a factor of 1.25 apart.
Note that the integral image means that it is easy to compute the rectangular features at any scale by simply scaling the coordinates of the corners of the rectangles.
Best features
The original paper contains pictures of the first two features selected in a typical cascade (see page 4).
The first feature detects the wide dark rectangle of the eyes above a wide brighter rectangle of the cheeks.
----------
----------
++++++++++
++++++++++
The second feature detects the bright thin rectangle of the bridge of the nose between the darker rectangles on either side containing the eyes.
---+++---
---+++---
---+++---
I'v got a binary classification problem. I'm trying to train a neural network to recognize objects from images. Currently I've about 1500 50x50 images.
The question is whether extending my current training set by the same images flipped horizontally is a good idea or not? (images are not symetric)
Thanks
I think you can do this to a much larger extent, not just flipping the images horizontally, but changing the angle of the image by 1 degree. This will result in 360 samples for every instance that you have in your training set. Depending on how fast your algorithm is, this may be a pretty good way to ensure that the algorithm isn't only trained to recognize images and their mirrors.
It's possible that it's a good idea, but then again, I don't know what's the goal or the domain of the image recognition. Let's say the images contain characters and you're asking the image recognition software to determine if an image contains a forward slash / or a back slash \ then flipping the image will make your training data useless. If your domain doesn't suffer from such issues, then I'd think it's a good idea to flip them and even rotate with varying degrees.
I have used flipped images in AdaBoost with great success in the course: http://www.csc.kth.se/utbildning/kth/kurser/DD2427/bik12/Schedule.php
from the zip "TrainingImages.tar.gz".
I know there are some information on pros/cons with using flipped images somewhere in the slides (at the homepage) but I can't find it. Also a great resource is http://www.csc.kth.se/utbildning/kth/kurser/DD2427/bik12/DownloadMaterial/FaceLab/Manual.pdf (together with the slides) going thru things like finding things in different scales and orientation.
If the images patches are not symmetric I don't think its a good idea to flip. Better idea is to do some similarity transforms to the training set with some limits. Another way to increase the dataset is to add gaussian smoothed templates to it. Make sure that the number of positive and negative samples are proportional. Too many positive and too less negative might skew the classifier and give bad performance on testing set.
It depends on what your NN is based on. If you are extracting rotation invariant features or features that do not depend on the spatial position within the the image (like histograms or whatever) and train your NN with these features, then rotating will not be a good idea.
If you are training directly on pixel values, then it might be a good idea.
Some more details might be useful.