Vehicle segmentation and tracking - opencv

I've been working on a project for some time, to detect and track (moving) vehicles in video captured from UAV's, currently I am using an SVM trained on bag-of-feature representations of local features extracted from vehicle and background images. I am then using a sliding window detection approach to try and localise vehicles in the images, which I would then like to track. The problem is that this approach is far to slow and my detector isn't as reliable as I would like so I'm getting quite a few false positives.
So I have been considering attempting to segment the cars from the background to find the approximate position so to reduce the search space before applying my classifier, but I am not sure how to go about this, and was hoping someone could help?
Additionally, I have been reading about motion segmentation with layers, using optical flow to segment the frame by flow model, does anyone have any experience with this method, if so could you offer some input to as whether you think this method would be applicable for my problem.
Below is two frames from a sample video
frame 0:
frame 5:

Assumimg your cars are moving, you could try to estimate the ground plane (road).
You may get a descent ground plane estimate by extracting features (SURF rather than SIFT, for speed), matching them over frame pairs, and solving for a homography using RANSAC, since plane in 3d moves according to a homography between two camera frames.
Once you have your ground plane you can identify the cars by looking at clusters of pixels that don't move according to the estimated homography.
A more sophisticated approach would be to do Structure from Motion on the terrain. This only presupposes that it is rigid, and not that it it planar.
Update
I was wondering if you could expand on how you would go about looking for clusters of pixels that don't move according to the estimated homography?
Sure. Say I and K are two video frames and H is the homography mapping features in I to features in K. First you warp I onto K according to H, i.e. you compute the warped image Iw as Iw( [x y]' )=I( inv(H)[x y]' ) (roughly Matlab notation). Then you look at the squared or absolute difference image Diff=(Iw-K)*(Iw-K). Image content that moves according to the homography H should give small differences (assuming constant illumination and exposure between the images). Image content that violates H such as moving cars should stand out.
For clustering high-error pixel groups in Diff I would start with simple thresholding ("every pixel difference in Diff larger than X is relevant", maybe using an adaptive threshold). The thresholded image can be cleaned up with morphological operations (dilation, erosion) and clustered with connected components. This may be too simplistic, but its easy to implement for a first try, and it should be fast. For something more fancy look at Clustering in Wikipedia. A 2D Gaussian Mixture Model may be interesting; when you initialize it with the detection result from the previous frame it should be pretty fast.
I did a little experiment with the two frames you provided, and I have to say I am somewhat surprised myself how well it works. :-) Left image: Difference (color coded) between the two frames you posted. Right image: Difference between the frames after matching them with a homography. The remaining differences clearly are the moving cars, and they are sufficiently strong for simple thresholding.
Thinking of the approach you currently use, it may be intersting combining it with my proposal:
You could try to learn and classify the cars in the difference image D instead of the original image. This would amount to learning what a car motion pattern looks like rather than what a car looks like, which could be more reliable.
You could get rid of the expensive window search and run the classifier only on regions of D with sufficiently high value.
Some additional remarks:
In theory, the cars should even stand out if they are not moving since they are not flat, but given your distance to the scene and camera resolution this effect may be too subtle.
You can replace the feature extraction / matching part of my proposal with Optical Flow, if you like. This amounts to identifying flow vectors that "stick out" from a consistent frame-to-frame motion of the ground. It may be prone to outliers in the optical flow, however. You can also try to get the homography from the flow vectors.
This is important: Regardless of which method you use, once you have found cars in one frame you should use this information to robustify your search of these cars in consecutive frame, giving a higher likelyhood to detections close to the old ones (Kalman filter, etc). That's what tracking is all about!

If the number of cars in your field of view always remain the same but move around then you can use optical flow...it will give you good results against a still background...if the number of cars are changing then you need to call goodFeaturestoTrack function in OpenCV after certain number of frames and again track the cars using optical flow.
You can use background modelling to model the background and hence the cars are always your foreground.The simplest example is frame differentiation...subtract the previous frame current frame. diff(x,y,k) = I(x,y,k) - I(x,y,k-1) .As your cars are moving in each frame you will get their position..
Both the process will work fine since you have a still background I presume..check this link to find what Optical flow can do.

Related

A suitable workflow to detect and classify blurs in images? [duplicate]

I had asked this on photo stackexchange but thought it might be relevant here as well, since I want to implement this programatically in my implementation.
I am trying to implement a blur detection algorithm for my imaging pipeline. The blur that I want to detect is both -
1) Camera Shake: Pictures captured using hand which moves/shakes when shutter speed is less.
2) Lens focussing errors - (Depth of Field) issues, like focussing on a incorrect object causing some blur.
3) Motion blur: Fast moving objects in the scene, captured using a not high enough shutter speed. E.g. A moving car a night might show a trail of its headlight/tail light in the image as a blur.
How can one detect this blur and quantify it in some way to make some decision based on that computed 'blur metric'?
What is the theory behind blur detection?
I am looking of good reading material using which I can implement some algorithm for this in C/Matlab.
thank you.
-AD.
Motion blur and camera shake are kind of the same thing when you think about the cause: relative motion of the camera and the object. You mention slow shutter speed -- it is a culprit in both cases.
Focus misses are subjective as they depend on the intent on the photographer. Without knowing what the photographer wanted to focus on, it's impossible to achieve this. And even if you do know what you wanted to focus on, it still wouldn't be trivial.
With that dose of realism aside, let me reassure you that blur detection is actually a very active research field, and there are already a few metrics that you can try out on your images. Here are some that I've used recently:
Edge width. Basically, perform edge detection on your image (using Canny or otherwise) and then measure the width of the edges. Blurry images will have wider edges that are more spread out. Sharper images will have thinner edges. Google for "A no-reference perceptual blur metric" by Marziliano -- it's a famous paper that describes this approach well enough for a full implementation. If you're dealing with motion blur, then the edges will be blurred (wide) in the direction of the motion.
Presence of fine detail. Have a look at my answer to this question (the edited part).
Frequency domain approaches. Taking the histogram of the DCT coefficients of the image (assuming you're working with JPEG) would give you an idea of how much fine detail the image has. This is how you grab the DCT coefficients from a JPEG file directly. If the count for the non-DC terms is low, it is likely that the image is blurry. This is the simplest way -- there are more sophisticated approaches in the frequency domain.
There are more, but I feel that that should be enough to get you started. If you require further info on either of those points, fire up Google Scholar and look around. In particular, check out the references of Marziliano's paper to get an idea about what has been tried in the past.
There is a great paper called : "analysis of focus measure operators for shape-from-focus" (https://www.researchgate.net/publication/234073157_Analysis_of_focus_measure_operators_in_shape-from-focus) , which does a comparison about 30 different techniques.
Out of all the different techniques, the "Laplacian" based methods seem to have the best performance. Most image processing programs like : MATLAB or OPENCV have already implemented this method . Below is an example using OpenCV : http://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
One important point to note here is that an image can have some blurry areas and some sharp areas. For example, if an image contains portrait photography, the image in the foreground is sharp whereas the background is blurry. In sports photography, the object in focus is sharp and the background usually has motion blur. One way to detect such a spatially varying blur in an image is to run a frequency domain analysis at every location in the image. One of the papers which addresses this topic is "Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes" (cvpr2017).
the authors look at multi resolution DCT coefficients at every pixel. These DCT coefficients are divided into low, medium, and high frequency bands, out of which only the high frequency coefficients are selected.
The DCT coefficients are then fused together and sorted to form the multiscale-fused and sorted high-frequency transform coefficients
A subset of these coefficients are selected. the number of selected coefficients is a tunable parameter which is application specific.
The selected subset of coefficients are then sent through a max pooling block to retain the highest activation within all the scales. This gives the blur map as the output, which is then sent through a post processing step to refine the map.
This blur map can be used to quantify the sharpness in various regions of the image. In order to get a single global metric to quantify the bluriness of the entire image, the mean of this blur map or the histogram of this blur map can be used
Here are some examples results on how the algorithm performs:
The sharp regions in the image have a high intensity in the blur_map, whereas blurry regions have a low intensity.
The github link to the project is: https://github.com/Utkarsh-Deshmukh/Spatially-Varying-Blur-Detection-python
The python implementation of this algorithm can be found on pypi which can easily be installed as shown below:
pip install blur_detector
A sample code snippet to generate the blur map is as follows:
import blur_detector
import cv2
if __name__ == '__main__':
img = cv2.imread('image_name', 0)
blur_map = blur_detector.detectBlur(img, downsampling_factor=4, num_scales=4, scale_start=2, num_iterations_RF_filter=3)
cv2.imshow('ori_img', img)
cv2.imshow('blur_map', blur_map)
cv2.waitKey(0)
For detecting blurry images, you can tweak the approach and add "Region of Interest estimation".
In this github link: https://github.com/Utkarsh-Deshmukh/Blurry-Image-Detector , I have used local entropy filters to estimate a region of interest. In this ROI, I then use DCT coefficients as feature extractors and train a simple multi-layer perceptron. On testing this approach on 20000 images in the "BSD-B" dataset (http://cg.postech.ac.kr/research/realblur/) I got an average accuracy of 94%
Just to add on the focussing errors, these may be detected by comparing the psf of the captured blurry images (wider) with reference ones (sharper). Deconvolution techniques may help correcting them but leaving artificial errors (shadows, rippling, ...). A light field camera can help refocusing to any depth planes since it captures the angular information besides the traditional spatial ones of the scene.

How to position a car in image processing (computer vision)?

I would like to locate a car (front center point x,y) using a high resolution single camera. The camera setup is fixed at 1-2m high, and tilted around 25 degrees. The camera can provide images in where the front side of the car is visible. The intrinsic and extrinsic parameters are known.
So far, I tried to detect the headlights and number plates. Issues... Headlights are not detected as blobs all the time. The shape of the headlights are changing depending on the distance. Also, the number plate is not visible in the dark.
Is there a robust algorithm to detect a car? or to detect headlights? or detect number plate?How could I proceed?
Thanks in advance,
Are you detecting the same car everytime? If yes, then presumably the appearance remains consistent. Rather than detect and recognise blobs and shapes, you may be better off using scale and rotation invariant features combined with a machine learning algorithm. Look into the SIFT and SURF feature descriptors. For easy experimentation, use OpenCV's implementation of feature description and matching. Take a look at this example.
This is not an easy problem because of the change in the scale and point of view. Ideally, you would need a collection of training images with the car seen from different points of view to match later some of them to your input image. Then, you need local features (SIFT, SURF) or some classifier to decide on the match.
On the other hand, if you are tracking the same car all the time, check out the MeanShift algorithm. The problem is you need an initial position to carry on with the tracking.

How to verify the correctness of calibration of a webcam?

I am totally new to camera calibration techniques... I am using OpenCV chessboard technique... I am using a webcam from Quantum...
Here are my observations and steps..
I have kept each chess square side = 3.5 cm. It is a 7 x 5 chessboard with 6 x 4 internal corners. I am taking total of 10 images in different views/poses at a distance of 1 to 1.5 m from the webcam.
I am following the C code in Learning OpenCV by Bradski for the calibration.
my code for calibration is
cvCalibrateCamera2(object_points,image_points,point_counts,cvSize(640,480),intrinsic_matrix,distortion_coeffs,NULL,NULL,CV_CALIB_FIX_ASPECT_RATIO);
Before calling this function I am making the first and 2nd element along the diagonal of the intrinsic matrix as one to keep the ratio of focal lengths constant and using CV_CALIB_FIX_ASPECT_RATIO
With the change in distance of the chess board the fx and fy are changing with fx:fy almost equal to 1. there are cx and cy values in order of 200 to 400. the fx and fy are in the order of 300 - 700 when I change the distance.
Presently I have put all the distortion coefficients to zero because I did not get good result including distortion coefficients. My original image looked handsome than the undistorted one!!
Am I doing the calibration correctly?. Should I use any other option than CV_CALIB_FIX_ASPECT_RATIO?. If yes, which one?
Hmm, are you looking for "handsome" or "accurate"?
Camera calibration is one of the very few subjects in computer vision where accuracy can be directly quantified in physical terms, and verified by a physical experiment. And the usual lesson is that (a) your numbers are just as good as the effort (and money) you put into them, and (b) real accuracy (as opposed to imagined) is expensive, so you should figure out in advance what your application really requires in the way of precision.
If you look up the geometrical specs of even very cheap lens/sensor combinations (in the megapixel range and above), it becomes readily apparent that sub-sub-mm calibration accuracy is theoretically achievable within a table-top volume of space. Just work out (from the spec sheet of your camera's sensor) the solid angle spanned by one pixel - you'll be dazzled by the spatial resolution you have within reach of your wallet. However, actually achieving REPEATABLY something near that theoretical accuracy takes work.
Here are some recommendations (from personal experience) for getting a good calibration experience with home-grown equipment.
If your method uses a flat target ("checkerboard" or similar), manufacture a good one. Choose a very flat backing (for the size you mention window glass 5 mm thick or more is excellent, though obviously fragile). Verify its flatness against another edge (or, better, a laser beam). Print the pattern on thick-stock paper that won't stretch too easily. Lay it after printing on the backing before gluing and verify that the square sides are indeed very nearly orthogonal. Cheap ink-jet or laser printers are not designed for rigorous geometrical accuracy, do not trust them blindly. Best practice is to use a professional print shop (even a Kinko's will do a much better job than most home printers). Then attach the pattern very carefully to the backing, using spray-on glue and slowly wiping with soft cloth to avoid bubbles and stretching. Wait for a day or longer for the glue to cure and the glue-paper stress to reach its long-term steady state. Finally measure the corner positions with a good caliper and a magnifier. You may get away with one single number for the "average" square size, but it must be an average of actual measurements, not of hopes-n-prayers. Best practice is to actually use a table of measured positions.
Watch your temperature and humidity changes: paper adsorbs water from the air, the backing dilates and contracts. It is amazing how many articles you can find that report sub-millimeter calibration accuracies without quoting the environment conditions (or the target response to them). Needless to say, they are mostly crap. The lower temperature dilation coefficient of glass compared to common sheet metal is another reason for preferring the former as a backing.
Needless to say, you must disable the auto-focus feature of your camera, if it has one: focusing physically moves one or more pieces of glass inside your lens, thus changing (slightly) the field of view and (usually by a lot) the lens distortion and the principal point.
Place the camera on a stable mount that won't vibrate easily. Focus (and f-stop the lens, if it has an iris) as is needed for the application (not the calibration - the calibration procedure and target must be designed for the app's needs, not the other way around). Do not even think of touching camera or lens afterwards. If at all possible, avoid "complex" lenses - e.g. zoom lenses or very wide angle ones. For example, anamorphic lenses require models much more complex than stock OpenCV makes available.
Take lots of measurements and pictures. You want hundreds of measurements (corners) per image, and tens of images. Where data is concerned, the more the merrier. A 10x10 checkerboard is the absolute minimum I would consider. I normally worked at 20x20.
Span the calibration volume when taking pictures. Ideally you want your measurements to be uniformly distributed in the volume of space you will be working with. Most importantly, make sure to angle the target significantly with respect to the focal axis in some of the pictures - to calibrate the focal length you need to "see" some real perspective foreshortening. For best results use a repeatable mechanical jig to move the target. A good one is a one-axis turntable, which will give you an excellent prior model for the motion of the target.
Minimize vibrations and associated motion blur when taking photos.
Use good lighting. Really. It's amazing how often I see people realize late in the game that you need a generous supply of photons to calibrate a camera :-) Use diffuse ambient lighting, and bounce it off white cards on both sides of the field of view.
Watch what your corner extraction code is doing. Draw the detected corner positions on top of the images (in Matlab or Octave, for example), and judge their quality. Removing outliers early using tight thresholds is better than trusting the robustifier in your bundle adjustment code.
Constrain your model if you can. For example, don't try to estimate the principal point if you don't have a good reason to believe that your lens is significantly off-center w.r.t the image, just fix it at the image center on your first attempt. The principal point location is usually poorly observed, because it is inherently confused with the center of the nonlinear distortion and by the component parallel to the image plane of the target-to-camera's translation. Getting it right requires a carefully designed procedure that yields three or more independent vanishing points of the scene and a very good bracketing of the nonlinear distortion. Similarly, unless you have reason to suspect that the lens focal axis is really tilted w.r.t. the sensor plane, fix at zero the (1,2) component of the camera matrix. Generally speaking, use the simplest model that satisfies your measurements and your application needs (that's Ockam's razor for you).
When you have a calibration solution from your optimizer with low enough RMS error (a few tenths of a pixel, typically, see also Josh's answer below), plot the XY pattern of the residual errors (predicted_xy - measured_xy for each corner in all images) and see if it's a round-ish cloud centered at (0, 0). "Clumps" of outliers or non-roundness of the cloud of residuals are screaming alarm bells that something is very wrong - likely outliers due to bad corner detection or matching, or an inappropriate lens distortion model.
Take extra images to verify the accuracy of the solution - use them to verify that the lens distortion is actually removed, and that the planar homography predicted by the calibrated model actually matches the one recovered from the measured corners.
This is a rather late answer, but for people coming to this from Google:
The correct way to check calibration accuracy is to use the reprojection error provided by OpenCV. I'm not sure why this wasn't mentioned anywhere in the answer or comments, you don't need to calculate this by hand - it's the return value of calibrateCamera. In Python it's the first return value (followed by the camera matrix, etc).
The reprojection error is the RMS error between where the points would be projected using the intrinsic coefficients and where they are in the real image. Typically you should expect an RMS error of less than 0.5px - I can routinely get around 0.1px with machine vision cameras. The reprojection error is used in many computer vision papers, there isn't a significantly easier or more accurate way to determine how good your calibration is.
Unless you have a stereo system, you can only work out where something is in 3D space up to a ray, rather than a point. However, as one can work out the pose of each planar calibration image, it's possible to work out where each chessboard corner should fall on the image sensor. The calibration process (more or less) attempts to work out where these rays fall and minimises the error over all the different calibration images. In Zhang's original paper, and subsequent evaluations, around 10-15 images seems to be sufficient; at this point the error doesn't decrease significantly with the addition of more images.
Other software packages like Matlab will give you error estimates for each individual intrinsic, e.g. focal length, centre of projection. I've been unable to make OpenCV spit out that information, but maybe it's in there somewhere. Camera calibration is now native in Matlab 2014a, but you can still get hold of the camera calibration toolbox which is extremely popular with computer vision users.
http://www.vision.caltech.edu/bouguetj/calib_doc/
Visual inspection is necessary, but not sufficient when dealing with your results. The simplest thing to look for is that straight lines in the world become straight in your undistorted images. Beyond that, it's impossible to really be sure if your cameras are calibrated well just by looking at the output images.
The routine provided by Francesco is good, follow that. I use a shelf board as my plane, with the pattern printed on poster paper. Make sure the images are well exposed - avoid specular reflection! I use a standard 8x6 pattern, I've tried denser patterns but I haven't seen such an improvement in accuracy that it makes a difference.
I think this answer should be sufficient for most people wanting to calibrate a camera - realistically unless you're trying to calibrate something exotic like a Fisheye or you're doing it for educational reasons, OpenCV/Matlab is all you need. Zhang's method is considered good enough that virtually everyone in computer vision research uses it, and most of them either use Bouguet's toolbox or OpenCV.

Detection of Blur in Images/Video sequences

I had asked this on photo stackexchange but thought it might be relevant here as well, since I want to implement this programatically in my implementation.
I am trying to implement a blur detection algorithm for my imaging pipeline. The blur that I want to detect is both -
1) Camera Shake: Pictures captured using hand which moves/shakes when shutter speed is less.
2) Lens focussing errors - (Depth of Field) issues, like focussing on a incorrect object causing some blur.
3) Motion blur: Fast moving objects in the scene, captured using a not high enough shutter speed. E.g. A moving car a night might show a trail of its headlight/tail light in the image as a blur.
How can one detect this blur and quantify it in some way to make some decision based on that computed 'blur metric'?
What is the theory behind blur detection?
I am looking of good reading material using which I can implement some algorithm for this in C/Matlab.
thank you.
-AD.
Motion blur and camera shake are kind of the same thing when you think about the cause: relative motion of the camera and the object. You mention slow shutter speed -- it is a culprit in both cases.
Focus misses are subjective as they depend on the intent on the photographer. Without knowing what the photographer wanted to focus on, it's impossible to achieve this. And even if you do know what you wanted to focus on, it still wouldn't be trivial.
With that dose of realism aside, let me reassure you that blur detection is actually a very active research field, and there are already a few metrics that you can try out on your images. Here are some that I've used recently:
Edge width. Basically, perform edge detection on your image (using Canny or otherwise) and then measure the width of the edges. Blurry images will have wider edges that are more spread out. Sharper images will have thinner edges. Google for "A no-reference perceptual blur metric" by Marziliano -- it's a famous paper that describes this approach well enough for a full implementation. If you're dealing with motion blur, then the edges will be blurred (wide) in the direction of the motion.
Presence of fine detail. Have a look at my answer to this question (the edited part).
Frequency domain approaches. Taking the histogram of the DCT coefficients of the image (assuming you're working with JPEG) would give you an idea of how much fine detail the image has. This is how you grab the DCT coefficients from a JPEG file directly. If the count for the non-DC terms is low, it is likely that the image is blurry. This is the simplest way -- there are more sophisticated approaches in the frequency domain.
There are more, but I feel that that should be enough to get you started. If you require further info on either of those points, fire up Google Scholar and look around. In particular, check out the references of Marziliano's paper to get an idea about what has been tried in the past.
There is a great paper called : "analysis of focus measure operators for shape-from-focus" (https://www.researchgate.net/publication/234073157_Analysis_of_focus_measure_operators_in_shape-from-focus) , which does a comparison about 30 different techniques.
Out of all the different techniques, the "Laplacian" based methods seem to have the best performance. Most image processing programs like : MATLAB or OPENCV have already implemented this method . Below is an example using OpenCV : http://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
One important point to note here is that an image can have some blurry areas and some sharp areas. For example, if an image contains portrait photography, the image in the foreground is sharp whereas the background is blurry. In sports photography, the object in focus is sharp and the background usually has motion blur. One way to detect such a spatially varying blur in an image is to run a frequency domain analysis at every location in the image. One of the papers which addresses this topic is "Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes" (cvpr2017).
the authors look at multi resolution DCT coefficients at every pixel. These DCT coefficients are divided into low, medium, and high frequency bands, out of which only the high frequency coefficients are selected.
The DCT coefficients are then fused together and sorted to form the multiscale-fused and sorted high-frequency transform coefficients
A subset of these coefficients are selected. the number of selected coefficients is a tunable parameter which is application specific.
The selected subset of coefficients are then sent through a max pooling block to retain the highest activation within all the scales. This gives the blur map as the output, which is then sent through a post processing step to refine the map.
This blur map can be used to quantify the sharpness in various regions of the image. In order to get a single global metric to quantify the bluriness of the entire image, the mean of this blur map or the histogram of this blur map can be used
Here are some examples results on how the algorithm performs:
The sharp regions in the image have a high intensity in the blur_map, whereas blurry regions have a low intensity.
The github link to the project is: https://github.com/Utkarsh-Deshmukh/Spatially-Varying-Blur-Detection-python
The python implementation of this algorithm can be found on pypi which can easily be installed as shown below:
pip install blur_detector
A sample code snippet to generate the blur map is as follows:
import blur_detector
import cv2
if __name__ == '__main__':
img = cv2.imread('image_name', 0)
blur_map = blur_detector.detectBlur(img, downsampling_factor=4, num_scales=4, scale_start=2, num_iterations_RF_filter=3)
cv2.imshow('ori_img', img)
cv2.imshow('blur_map', blur_map)
cv2.waitKey(0)
For detecting blurry images, you can tweak the approach and add "Region of Interest estimation".
In this github link: https://github.com/Utkarsh-Deshmukh/Blurry-Image-Detector , I have used local entropy filters to estimate a region of interest. In this ROI, I then use DCT coefficients as feature extractors and train a simple multi-layer perceptron. On testing this approach on 20000 images in the "BSD-B" dataset (http://cg.postech.ac.kr/research/realblur/) I got an average accuracy of 94%
Just to add on the focussing errors, these may be detected by comparing the psf of the captured blurry images (wider) with reference ones (sharper). Deconvolution techniques may help correcting them but leaving artificial errors (shadows, rippling, ...). A light field camera can help refocusing to any depth planes since it captures the angular information besides the traditional spatial ones of the scene.

Finding the height above water level of rocks

I am currently helping a friend working on a geo-physical project, I'm not by any means a image processing pro, but its fun to play
around with these kinds of problems. =)
The aim is to estimate the height of small rocks sticking out of water, from surface to top.
The experimental equipment will be a ~10MP camera mounted on a distance meter with a built in laser pointer.
The "operator" will point this at a rock, press a trigger which will register a distance along of a photo of the rock, which
will be in the center of the image.
The eqipment can be assumed to always be held at a fixed distance above the water.
As I see it there are a number of problems to overcome:
Lighting conditions
Depending on the time of day etc., the rock might be brighter then the water or opposite.
Sometimes the rock will have a color very close to the water.
The position of the shade will move throughout the day.
Depending on how rough the water is, there might sometimes be a reflection of the rock in the water.
Diversity
The rock is not evenly shaped.
Depending on the rock type, growth of lichen etc., changes the look of the rock.
Fortunateness, there is no shortage of test data. Pictures of rocks in water is easy to come by. Here are some sample images:
I've run a edge detector on the images, and esp. in the fourth picture the poor contrast makes it hard to see the edges:
Any ideas would be greatly appreciated!
I don't think that edge detection is best approach to detect the rocks. Other objects, like the mountains or even the reflections in the water will result in edges.
I suggest that you try a pixel classification approach to segment the rocks from the background of the image:
For each pixel in the image, extract a set of image descriptors from a NxN neighborhood centered at that pixel.
Select a set of images and manually label the pixels as rock or background.
Use the labeled pixels and the respective image descriptors to train a classifier (eg. a Naive Bayes classifier)
Since the rocks tends to have similar texture, I would use texture image descriptors to train the classifier. You could try, for example, to extract a few statistical measures from each color chanel (R,G,B) like the mean and standard deviation of the intensity values.
Pixel classification might work here, but will never yield a 100% accuracy. The variance in the data is really big, rocks have different colours (which are also "corrupted" with lighting) and different texture. So, one must account for global information as well.
The problem you deal with is foreground extraction. There are two approaches I am aware of.
Energy minimization via graph cuts, see e.g. http://en.wikipedia.org/wiki/GrabCut (there are links to the paper and OpenCV implementation). Some initialization ("seeds") should be done (either by a user or by some prior knowledge like the rock is in the center while water is on the periphery). Another variant of input is an approximate bounding rectangle. It is implemented in MS Office 2010 foreground extraction tool.
The energy function of possible foreground/background labellings enforces foreground to be similar to the foreground seeds, and a smooth boundary. So, the minimum of the energy corresponds to the good foreground mask. Note that with pixel classification approach one should pre-label a lot of images to learn from, then segmentation is done automatically, while with this approach one should select seeds on each query image (or they are chosen implicitly).
Active contours a.k.a. snakes also requre some user interaction. They are more like Photoshop Magic Wand tool. They also try to find a smooth boundary, but do not consider the inner area.
Both methods might have problems with the reflections (pixel classification will definitely have). If it is the case, you may try to find an approximate vertical symmetry, and delete the lower part, if any. You can also ask a user to mark the reflaction as a background while collecting stats for graph cuts.
Color segmentation to find the rock, together with edge detection to find the top.
To find the water level I would try and find all the water-rock boundaries, and the horizon (if possible) then fit a plane to the surface of the water.
That way you don't need to worry about reflections of the rock.
Easier if you know the pitch angle between the camera and the water and if the camera is is leveled horizontally (roll).
ps. This is a lot harder than I thought - you don't know the distance to all the rocks so fitting a plane is difficult.
It occurs that the reflection is actually the ideal way of finding the level, look for symetric path edges in the rock edge detection and pick the vertex?

Resources