I've finished an algorithm aimed to foreground extraction based on video recently, but it processes too slowly per frame. There is an algorithm based on Mixed Gaussian Model named BackgroundSubtractorMOG2 in OpenCV3.0 and I find it processes quickly as nearly 15 times as mine per frame. I just wonder is it accelerated by OpenCL on GPU ? Or it is just run on CPU? p.s. I've seen some source codes of it and noticed there are OpenCL blocks but I'm not sure since I'm fresh. I will be very appreciated if anyone could help me figure it out!
If you look at the API page here You will find the line:
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See [Bouguet00]. The function is parallelized with the TBB library.
The TBB library is a parallization library and is used to "write parallel C++ programs that take full advantage of multicore performance" - this means that it is using more than just one CPU at a time, a much quicker way of processing. This can be seen on lines like this (Line 566):
parallel_for_(Range(0, image.rows),
MOG2Invoker(image, fgmask,
(GMM*)bgmodel.data,
(float*)(bgmodel.data + sizeof(GMM)*nmixtures*image.rows*image.cols),
bgmodelUsedModes.data, nmixtures, (float)learningRate,
(float)varThreshold,
backgroundRatio, varThresholdGen,
fVarInit, fVarMin, fVarMax, float(-learningRate*fCT), fTau,
bShadowDetection, nShadowDetection));
Related
I have developed the Xcode project that uses OpenCV functions for image processing when the iPhone camera live stream.
It takes some time to process one frame and doesn't look like real time.
Is it possible to accelerate the calculation by integrating OpenCV and Metal?
For example, OpenCV function "grabCut" takes more than 1 second to detect certain foreground objects.
How can I reduce the processing time down to 10ms at least using Metal?
You can't call OpenCV functions from Metal.
If you want to speed up this algorithm, you could try porting it to Metal but that's only an option if the algorithm -- or major parts of it -- are highly parallel.
Now, it looks like grabCut has a CUDA implementation (which I found by googling for "grabcut cuda"), which means that implementing this in Metal might actually be worth doing. If you can find the CUDA source code, it's usually a relatively straightforward port.
OpenCV has a gpu. GPU-accelerated Computer Vision module (http://docs.opencv.org/modules/gpu/doc/gpu.html). There are many functions which is already use GPU techniques. So I can directly use the function OpenCV applies. But I wonder whether it would be faster if I write my own kernel and in each kernel I call function of OpenCV GPU module. This is in the case I have many images. To handle each image I call OpenCV funtion in GPU module. Then it would be parallel-nested-parallel.
Your question is not entirely clear to me, but I would like to say this: it's impossible to say which would be faster, unless somebody already implemented that same algorithm using the approach you have in mind, and then shared a report about the benchmark tests.
There's a number of factors involved:
It depends on the type of operation you are trying to implement: techniques that have a high arithmetic intensity are better fit for GPUs for sure, however, not all problems can be modeled for GPUs.
The size of the input images matter: wasting time sending data from RAM to the GPU might not compensate in the end, so running the algorithm on the CPU can be faster for small images.
The model/power of the CPU/GPU: if the computer has a really crappy GPU, then it's probably better to run the algorithms on the CPU.
What I'm saying is: don't assume OpenCV GPU's module will always run it's algorithms faster than the CPU you got. Test it, measure it! The only way to know for sure is through experimentation and benchmark.
I need to develop an image processing program for my project in which I have to count the number of cars on the road. I am using GPU programming. Should I go for OpenCV program with GPU processing feature or should I develop my entire program on CUDA without any OpenCV library?
The algorithms which I am using for counting the number of cars is background subtraction, segmentation and edge detection.
You can use GPU functions in OpenCV.
First visit the introduction about this : http://docs.opencv.org/modules/gpu/doc/introduction.html
Secondly, I think above mentioned processes are already implemented in OpenCV optimized for GPU. So It will be much easier to develop with OpenCV.
Canny Edge Detection : http://docs.opencv.org/modules/gpu/doc/image_processing.html#gpu-canny
PerElement Operations (including subtraction): http://docs.opencv.org/modules/gpu/doc/per_element_operations.html#per-element-operations
For other functions, visit OpenCV docs.
OpenCV, no doubt, has the biggest collection of Image processing functionality and recently they've started porting functions to CUDA as well. There's a new GPU module in latest OpenCV with few functions ported to CUDA.
Being said that, OpenCV is not the best option to build a CUDA based application as there are many dedicated CUDA libraries like CUVI that beat OpenCV in Performance. If you're looking for an optimized solution, you should also give them a try.
I'm working on robot vision system and its main purpose is to detect objects, i want to choose one of these libraries (CImg , OpenCV) and I have knowledge about both of them.
The robot I'm using has Linux , 1GHz CPU and 1G ram and I'm using C++ the size of image is 320p.
I want to have a real-time image processing near 20 out of 25 frames per seconds.
In your opinion which library is more powerful l although I have tested both and they have the same process time, open cv is slightly better and I think that's because I use pointers with open cv codes.
Please share your idea and your reason.
thanks.
I think you can possibly get best performance when you integrated - OpenCV with IPP.
See this reference, http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-open-source-computer-vision-library-opencv-faq/
Here is another reference http://experienceopencv.blogspot.com/2011/07/speed-up-with-intel-integrated.html
Further, if you freeze the algorithm that works perfectly, usually you can isolate your algorithm and work your way towards doing serious optimization (such as memory optimization, porting to assembly etc.) which might not be ready to use.
It really depends on what you want to do (what kind of objects you want to detect, accuracy, what algorithm you are using etc..) and how much time you have got. If it is for generic computer vision/image processing, I would stick with OpenCV. As Dipan said, do consider further optimization. In my experience with optimization for Computer Vision, the bottleneck usually is in memory interconnect bandwidth (or memory itself) and so you might have to trade in cycles (computation) to save on communication. Do understand the algorithm really well to further optimize the algorithm (which at times can give huge improvements as compared to compilers).
Does anybody here do computer vision work on Mathematica? I would like to know what external libraries are available for doing that. The built in image processing functions are not enough. I am looking for things like SURF, stereo, camera calibration, multi-view geometry etc.
How difficult would it be to wrap OpenCV for use in Mathematica?
Apart from the extensive set of image processing tools that are now (version 8) natively present in Mathematica, and which include a number of CV algorithms like finding morphologic objects, image segmentation and feature detection (see figure below), there's the new LibraryLink functionality, which makes working with DLLs very easy. You wouldn't have to change OpenCV much to be able to call it from Mathematica. Just some wrappers for the functions to be called and you're basically done.
I don't think such a thing exists, but I'm getting started.
It has the advantage that you can perform some analytic methods... for example rather than hacking in openCV or even Matlab endlessly, you can compute analytically a quantity, and see that the method leading to this matrix is numerically unstable as a function of input variables. Thus you do not need to hack, as it would be pointless.
As for wrapping opencv, that doesn't seem to make sense. The correct procedure would be to fix bad implementations in opencv based on your analysis in Mathematica and on paper.
Agreeing with Peter, I don't believe that forcing Mathematica to use OpenCV is a great thing.
All of the computer vision people that I've talked to, read about, and seen examples are using Matlab and the Imaging toolkit. Its either that, or go with a OpenCV compatible language + OpenCV.
Mathematica has a rich set of tools for image processing, but I'm uncertain about the computer vision capabilities.