how to use glmnet without regularization - glm

I have read that glmnet can be used without regularization, i.e. it can be used as a regular glm. I am writing a thesis and trying to avoid using to many different packages, so it would be convenient to use glmnet to do a regular glm logistic regression fitting. Can anyone help me?

Setting both tuning parameters alpha and lambda to zero should give you a "normal" logistic regression without regularization.

Related

Assumptions of Naive Bayes and Logistic Regression

Am trying to understand the difference in assumptions required for Naive Bayes and Logistic Regression.
As per my knowledge both Naive Bayes and Logistic Regression should have features independent to each other ie predictors should not have any multi co-linearity.
and only in Logistic Regression should follow linearity of independent variables and log-odds.
Correct me if am wrong and is there any other assumptions/differences between Naive and logistic regression
You are right durga. Them two have similar performances as well.
A difference is that NB assumes normal distributions, whereas logistic regression does not. As for speed, NB is much faster.
Logistic regression, according to this source:
1) Requires observations to be independent of each other.  In other words, the observations should not come from repeated measurements or matched data.
2) Requires the dependent variable to be binary and ordinal logistic regression requires the dependent variable to be ordinal.
3) Requires little or no multicollinearity among the independent variables.  This means that the independent variables should not be too highly correlated with each other.
4) Assumes linearity of independent variables and log odds.
5) Typically requires a large sample size.  A general guideline is that you need at minimum of 10 cases with the least frequent outcome for each independent variable in your model.
tl;dr:
Naive Bayes requires conditional independence of the variables. Regression family needs the feature to be not highly correlated to have a interpretable/well fit model.
Naive Bayes require the features to meet the "conditional independence" requirement which means:
This is very much different than the "regression family" requirements. What they need is that variables are not "correlated". Even if the features are correlated, the regression model might only become overfit or might become harder to interpret. So if you use a proper regularization, you would still get a good prediction.

Ordinal logistic regression how it differs from logistic regression?

I am sure this question may not be in the brilliant category. But Somehow to learn machine learning i may start with stupid question. So, please.
I understood the terms of regressions partially.
The regression essentially give the idea of the relationship between the dependent and independent variables.
If the dependent variable is continuous and if you see the linear relation between dependent and independent, then linear regression is a way to go.
A slight change now. If the dependent value could be something like Binary value (Y/N), ie: the output value is binomial distribution, then logistic regression is a way to go that which demands non linear relationship between dependent and independent.
So far..Please correct me if i am wrong.
Now my question is with respect to ordinal logistic regression.
I have started looking at the below link for reference
https://statistics.laerd.com/spss-tutorials/ordinal-regression-using-spss-statistics.php
Where it is mentioned that " It can be considered as either a generalisation of multiple linear regression or as a generalisation of binomial logistic regression".
Could someone help me understand this above statement with examples?
Logistic regression can be considered as an extension of linear regression. But instead of predicting continuous variables, it predicts discrete variables by introducing the computation of an activation function. So, you are asked to produce a discriminatory function that based on X you produce a function that outputs f: [1,2, ..., k] where k is the number of classes that your problem presents. Now X can be composed of features that are both continuous or discrete. It does not matter, just make sure you apply pre-processing to them.
The base case for logistic regression is finding the decision boundary that divides two classes. But in order to add more classes, you have to implement another approach. There are several: softmax (https://en.wikipedia.org/wiki/Softmax_function), one-vs-all (https://en.wikipedia.org/wiki/Multiclass_classification), etc.
Finally, answering your question about ordinal logistic regression is an extension of logistic regression. But considers the order of the output variables such as in the case of a test. Take a look online for examples.

Classification algorithm used as Regression algorithm

There is a continuous data sampled at a given frequency. I wanted to know that is it possible to use a classification algorithm, and use this along with some other functions so as to make it behave as a regression algorithm?
In general - no. Classification is not directly convertable to the regression (the opposite direction is much easier). You could obviously create some finite set of "buckets" of values and treat them as labels but in general I have never seen it perform better than even simpliest regressors. Why would you want to do something like this? Why do not use regressors for regression tasks?

How to finding relation between input parameter and output parameter by machine learning?

I have 20 numeric input parameters (or more) and single output parameter and I have thousands of these data. I need to find the relation between input parameters and output parameter. Some input parameters might not relate to output parameter or all input parameters might not relate to output parameter. I want some magic system that can statistically calculate output parameter when I provide all input parameters and it much be better if this system also provide confident rate with output result.
What’s technique (in machine learning) that I need to use to solve this problem? I think it should be Neural network, genetic algorithm or other related thing. But I don't sure. More than that, I need to know the limitation of this technique.
Thanks,
Your question seems to simply define the regression problem. Which can be solved by numerous algorithms and models, not just neural networks.
Support Vector Regression
Neural Networks
Linear regression (and many modifications and generalizations) using for example OLS method
Nearest Neighbours Regression
Decision Tree Regression
many, many more!
Simply look for "regression methods", "regression models" etc. in particular, sklearn library implements many of such methods.
I would recommend Genetic Programming (GP), which is genetic-based machine learning approach where the learnt model is a single mathematical expression/equation that best fits your data. Most GP packages out there come with a standard regression suite which you can run "as is" with your data, and with minimal setup costs.

Can I implement a classifier using a function?

I was learning about different techniques for classification, like probablistic classifiers etc , and stubled upon the question Why cant we implement a binary classifier as a Regression function of all the attributes and classify on the basis of the output of the function , say if the output is less than a certain value it belongs to class A , else in class B . Is there any limitation to this method compared to probablistic approach ?
You can do this and it is often done in practice, for example in Logistic Regression. It is not even limited to binary classes. There is no inherent limitation compared to a probabilistic approach, although you should keep in mind that both are fundamentally different approaches and hard to compare.
I think you have some misunderstanding in classification. No matter what kind of classifier you are using (svm, or logistic regression), you can always view the output model as
f(x)>b ===> positive
f(x) negative
This applies to both probabilistic model and non-probabilistic model. In fact, this is something related to risk minimization which results the cut-off branch naturally.
Yes, this is possible. For example, a perceptron does exactly that.
However, it is limited in its use to linearly separable problems. But multiple of them can be combined to solve arbitrarily complex problems in general neural networks.
Another machine learning technique, SVM, works in a similar way. It first transforms the input data into some high dimensional space and then separates it via a linear function.

Resources