Twitter data topical classification - twitter

So I have a data set which consists of tweets from various news organizations. I've loaded it into RapidMiner, tokenized it, and produced some n-grams of it. Now I want to be able to have RapidMiner automatically classify my data into various categories based on the topic of the tweets.
I'm pretty sure RapidMiner can do this, but according to the research I've done into it, I need a training data set to be able to show RapidMiner how I want things classified. So I need a training data set, though given the categories I wanted to classify things into, I might have to create my own.
So my questions are these:
1) Is there a training data set for twitter data that focuses more on the topic of the tweet as opposed to a sentiment analysis publicly available?
2) If there isn't one publicly available, how can I create my own? My idea to do it was to go through the tweets themselves and associate the tokens and n-grams with the categories I want. Some concerns I have with that are that I won't be able to manually classify enough tweets to create a training data set comprehensive enough so that I can get a good accuracy rate for the automatic classifier.
3) Any general advice for topical classification of text data would be great. This is the first time that I've done a project like this, and I'm sure there are things I could improve on. :)

There may be training corpora that work for you, but you need to say what your topic or categories are to identify it. The fact that this is Twitter may be relevant, but the data source is likely to be much less relevant to the classification accuracy you will achieve than the topic is. So if you take the infamous 20 newsgroups data set this is likely to work on Twitter as well, but only if the categories you are after are the 20 categories from that data set. If you want to classify cats vs dogs or Android vs iPhone you need to find a data set for that.
In most cases you will have to create initial labels manually, which is, as you say, a lot of work. One workaround might be to start with something simpler like a keyword search to create subsets of your tweets for which you know they deal with a particular category. Then you create the model on top of that and hope that it generalizes to identify the same categories even though the original keywords do not occur.
Alternatively, depending on your application (and if you actually want to build an applicaion), you may as well start with only a small data set and accept that you have poor classification. Then you generate classifications, show them to the users of your apps, and collect some form of explicit or implicit feedback on the classification (e.g. users can flag tweets as incorrectly classified). This way you improve your training corpus and periodically update your model.
Finally, if you do not know what your topics are and you want RapidMiner to identify the topics, you may want to try clustering as opposed to classification. Just create a few clusters and look at the top words for each cluster. They may well be quite dissimilar and describe what the respective clusters are about.
I believe your third question may be a bit broad for stackoverflow and is probably better answered by a text book.

Related

In ML, using RNN for an NLP project, is it necessary for DATA redundancy?

Is it necessary to repeat similar template data... Like the meaning and context is the same, but the smaller details vary. If I remove these redundancies, the dataset is very small (size in hundreds) but if the data like these are included, it easily crosses thousands. Which is the right approach?
SAMPLE DATA
This is acutally not a question suited for stack overflow but I'll answer anyways:
You have to think about how the emails (or what ever your data this is) will look in real-life usage: Do you want to detect any kind of spam or just similiar to what your sample data shows? If the first is the case, your dataset is just not suited for this problem since there are not enough various data samples. When you think about it, every of the senteces are exactly the same because the company name isn't really valueable information and will probably not be learned as a feature by your RNN. So the information is almost the same. And since every input sample will run through the network multiple times (once each epoch) it doesnt really help having almost the same sample multiple times.
So you shouldnt have one kind of almost identical data samples dominating your dataset.
But as I said: When you primarily want to filter out "Dear customer, we wish you a ..." you can try it with this dataset but you wouldnt really need an RNN to detect that. If you want to detect all kind of spam, you should search for a new dataset since ~100 unique samples are not enough. I hope that was helpful!

Extracting information from web-pages using NER

My task is to extract information from a various web-pages of a particular site. Now, the information to be extracted can be of the form as product name, product id, price, etc. The information is given in text using natural language. Also, I have been asked to extract that information using some Machine Learning algorithm. I thought of using NER (Named Entity Recognition) and training it on custom training data (which I can prepare using the scraped data and manually labeling the integers/data as required). I wanted to know if the model can even work this way?
Also, let me know if I can improve this question further.
You say a particular site. I am assuming that it means you have some fair idea of what the structures of webpages are, if the data is in table form or a free text form, how the website generally looks. In this case, a simple regex (prices, ids etc) supported by some POS tagger to extract product names and all is enough for you. A supervised approach is definitely an overkill and might underperform than the simpler regex.

Using NLP or machine learning to extract keywords off a sentence

I'm new to the ML/NLP field so my question is what technology would be most appropriate to achieve the following goal:
We have a short sentence - "Where to go for dinner?" or "What's your favorite bar?" or "What's your favorite cheap bar?"
Is there a technology that would enable me to train it providing the following data sets:
"Where to go for dinner?" -> Dinner
"What's your favorite bar?" -> Bar
"What's your favorite cheap restaurant?" -> Cheap, Restaurant
so that next time we have a similar question about an unknown activity, say, "What is your favorite expensive [whatever]" it would be able to extract "expensive" and [whatever]?
The goal is if we can train it with hundreds of variations(or thousands) of the question asked and relevant output data expected, so that it can work with everyday language.
I know how to make it even without NLP/ML if we have a dictionary of expected terms like Bar, Restaurant, Pool, etc., but we also want it to work with unknown terms.
I've seen examples with Rake and Scikit-learn for classification of "things", but I'm not sure how would I feed text into those and all those examples had predefined outputs for training.
I've also tried Google's NLP API, Amazon Lex and Wit to see how good they are at extracting entities, but the results are disappointing to say the least.
Reading about summarization techniques, I'm left with the impression it won't work with small, single-sentence texts, so I haven't delved into it.
As #polm23 mentioned for simple stuff you can use the POS tagging to do the extraction. The services you mentioned like LUIS, Dialog flow etc. , uses what is called Natural Language Understanding. They make uses of intents & entities(detailed explanation with examples you can find here). If you are concerned that your data is going online or sometimes you have to go offline, you always go for RASA.
Things you can do with RASA:
Entity extraction and sentence classification. Mention which particular term to be extracted from the sentence by tagging the word position with a variety of sentence. So if any different word comes other than what you had given in the training set it will be detected.
Uses rule-based learning and also keras LSTM for detection.
One downside when comparing with the online services is that you have to manually tag the position numbers in the JSON file for training as opposed to the click and tag features in the online services.
You can find the tutorial here.
I am having pain in my leg.
Eg I have trained RASA with a variety of sentences for identifying body part and symptom (I have limited to 2 entities only, you can add more), then when an unknown sentence (like the one above) appears it will correctly identify "pain" as "symptom" and "leg" as "body part".
Hope this answers your question!
Since "hundreds to thousands" sound like you have very little data for training a model from scratch. You might want to consider training (technically fine-tuning) a DialogFlow Agent to match sentences ("Where to go for dinner?") to intents ("Dinner"), then integrating via API calls.
Alternatively, you can invest time in fine-tuning a small pre-trained model like "Distilled BERT classifier" from "HuggingFace" as you won't need the 100s of thousands to billions of data samples required to train a production-worthy model. This can also be assessed offline and will equip you to solve other NLP problems in the future without much low-level understanding of the underlying statistics.

Categorize customer questions based on content

I’m working on web app where users can ask questions. These questions should be categorized by some criteria based on question content, title, user data, region and so on. Next these questions should be processed in so way: for some additional information requests should be sent, others should be deleted or marked as spam and some – sent directly to some specialist.
The problem is that users can’t choose the right category themselves, it’s pretty complex things and users can cheat.
Are there any approaches how to do that automatically? For now a few persons do this job filtering questions. Perhaps some already done solutions exist.
This is a really complex task. You should take a look at supervised machine learning classification algorithms. You can try to use similar to some spam filtering algorithm (https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering)
Gather some number of questions categorized before (labeled examples).
Gather some number of words (vocabulary) used for questions classifications (identify group).
Process question text removing “stop words” and replace words with their stems.
Map question text, title, user data and so to some numbers (question vector).
Use some algorithm like SVM to create and use classifier (model)
But it’s like very general approach you can look at. It’s hard to say something more specific without additional details. I don’t think you can find already done solution, it’s pretty specific task. But of cause you can use a lot of machine-learning frameworks.

Advice on classifying users in machine learning scenario

I'm looking for some advice in the problem of classifying users into various groups based on there answers to a sign up process.
The idea is that these classifications will group people with similar travel habits, i.e. adventurous, relaxing, foodie etc. This shouldn't be a classification known to the user, so isn't as simple as just asking what sort of holidays they like ( The point is to remove user bias/not really knowing where to place yourself).
The way I see it working is asking questions such as apps they use, accounts they interact with on social media (gopro, restaurants etc) , giving some scenarios and asking which sounds best, these would be chosen from a set provided to them, hence we have control over the variables. The main problem I have is how to get numerical values associated to each of these.
I've looked into various Machine learning algorithms and have realised this is most likely a clustering problem but I cant seem to figure out how to use this style of question to assign a value to each dimension that will actually give a useful categorisation.
Another question I have is whether there is some resources where I could find information on the sort of questions to ask users to gain information that'd allow classification like this.
The sort of process I envision is one similar to https://www.thread.com/signup/introduction if anyone is familiar with it.
Any advice welcomed.
The problem you have at hand is that you want to calculate a similarity measure based on categorical variables, which is the choice of their apps, accounts etc. Unless you measure the similarity of these apps with respect to an attribute such as how foodie is the app, it would be a hard problem to specify. Also, you would need to know all the possible states a categorical variable can assume to create a similarity measure like this.
If the final objective is to recommend something that similar people (based on app selection or social media account selection) have liked or enjoyed, you should look into collaborative filtering.
If your feature space is well defined and static (known apps, known accounts, limited set with few missing values) then look into content based recommendation systems, something as simple as Market Basket Analysis can give you a reasonable working model.
Else if you really want to model the system with a bunch of features that can assume random states, this could be done with multivariate probabilistic models, if the structure (relationships and influences between features) is well defined, you could benefit from Probabilistic Graphical Models, such as Bayesian Networks.
You really do need to define your problem better before you start solving it though.
You can use prime numbers. If each choice on the list of all possible choices is assigned a different prime, and the user's selection is saved as a product, then you will always know if the user has made a particular choice if the modulo of selection/choice is 0. Beauty of prime numbers, voila!

Resources