iOS GCD Thread Processing - View Controller Dismissed - ios

Consider the following code in a ViewController which runs when the user clicks a button:
var myBlock = {
[weak self] in
let queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0)
dispatch_async(queue) {
// Some heavy lifting code with final UI Feedback
let success = true
if(success) {
if let strongSelf = self {
dispatch_async(dispatch_get_main_queue(), { () -> Void in
// Tell user it was successful
strongSelf.label1.text = "SUCCESS!"
});
}
}
});
}
In the area where the heavy lifting occurs, lets say there is a process that takes about 5-10 seconds. If during that period the user dismisses the ViewController in which this code resides, does the background thread continue to run? If so, when the success block runs and attempts to access the UI element on the UI thread, what happens?
Ultimately, I am trying to understand the best practice for queueing a process in the background that updates the UI when possible. Also, if the user presses the home button, this process MUST continue in the background to completion. I have read that you can add: UIApplication.sharedApplication().beginBackgroundTaskWithExpirationHandler() Is that meant to operate inside a thread as seen above?
I'm sure this is a bit of a noob question, but I could really use some best practice guidance here.
Thanks!

When you reference to self inside a block a strong reference is stored in order to keep the reference until it is executed. The best practice is to create a weak self version to avoid retain cycles. You can achieve this creating the weak version outside the block like so in Objective C:
__weak typeof(self) weakSelf = self;
And in Swift:
var myBlock = {
[weak self] in
//some work with self
}
and access weakSelf instead of self in the block.
You can learn a little bit more in the next link.
The background thread will continue to run, you can implement NSOperations if you need to be a cancelable task. If you can unwrap the optional inside the block you can update the UI.
About beginBackgroundTaskWithExpirationHandler, it is used to mark the beginning of a long task you are about to start and get an extra time to complete it (and notify when it is done) in case the App is backgrounded, but if it can't be performed in that time the app will be terminated. You can use it if you needed, but it will not ensure to have the time to done your task.

Related

NSAsynchronousFetchRequest - should update be explicitly done on main thread

I am creating an NSAsynchronousFetchRequest which has a completion block inside it.
I have seen various examples where some include using dispatch queue on the main thread and others don't. For example the Ray Wenderlich core data book doesn't call the result on the main thread.
Should I go back on the main thread when executing the result. Initially I thought I had to but now I don't. Some definitive clarity would be great.
fun exampleFetch(_ completionHandler: #escaping () -> () {
let fetchRequest = NSFetchRequest<NSDictionary>(entityName: "Example")
let asyncFetchRequest = NSAsynchronousFetchRequest<NSDictionary>(fetchRequest: fetchRequest) { result in
// DispatchQueue.main.async { // is this needed
completion()
//}
}
managedContext.performChanges {
do {
try self.managedContext.execute(asyncFetchRequest)
} catch let error {
print("error trying to fetch saving objects:", error.localizedDescription)
}
}
}
You should not explicitly call the completion handler on the main queue. Let the caller decide how to handle it. If anything, document that the completion handler will be called on an arbitrary queue. Then the client calling your exampleFetch method knows that it is their responsibility to be sure that process the result on whatever queue it needs.
This gives the client more control.
This also prevents a lot of needless thread switching. A client may call exampleFetch from a background queue and it may want to process the results in the background. If you explicitly put the completion on the main queue, the client then needs to explicitly switch back to a background queue to process the result. That's two needless queue switches and it's wasted effort on the main queue.

Synchronization of multiple tasks on single thread

How can I prevent a block of code to be repeatedly accessed from the same thread?
Suppose, I have the next code:
func sendAnalytics() {
// some synchronous work
asyncTask() { _ in
completion()
}
}
I want to prevent any thread from accessing "// some synchronous work", before completion was called.
objc_sync_enter(self)
objc_sync_exit(self)
seem to only prevent accessing this code from multiple threads and don't save me from accessing this code from the single thread. Is there a way to do this correctly, without using custom solutions?
My repeatedly accessing, I mean calling this sendAnalytics from one thread multiple times. Suppose, I have a for, like this:
for i in 0...10 {
sendAnalytics()
}
Every next call won't be waiting for completion inside sendAnalytics get called (obvious). Is there a way to make the next calls wait, before completion fires? Or the whole way of thinking is wrong and I have to solve this problem higher, at the for body?
You can use a DispatchSemaphore to ensure that one call completes before the next can start
let semaphore = DispatchSemaphore(value:1)
func sendAnalytics() {
self.semaphore.wait()
// some synchronous work
asyncTask() { _ in
completion()
self.semaphore.signal()
}
}
The second call to sendAnalytics will block until the first asyncTask is complete. You should be careful not to block the main queue as that will cause your app to become non-responsive. It is probably safer to dispatch the sendAnalytics call onto its own serial dispatch queue to eliminate this risk:
let semaphore = DispatchSemaphore(value:1)
let analyticsQueue = DispatchQueue(label:"analyticsQueue")
func sendAnalytics() {
analyticsQueue.async {
self.semaphore.wait()
// some synchronous work
asyncTask() { _ in
completion()
self.semaphore.signal()
}
}
}

Swift 3 multithreading using which queue?

I'm going through Stanford CP 193P, looking at a Twitter client.
When a network is called, I assumed it would always be called on the main queue unless invoked on another queue. However without dispatch back onto the main queue (as below) the App does not work as expected - meaning we must not be on the main queue. How?
When tweets are fetched the following closure is used - and to update the UI means that the work needs to be done on the main thread (DispatchQueue.main.async)
request.fetchTweets { [weak self] (newTweets) in
DispatchQueue.main.async {
if request == self?.lastTwitterRequest {
self?.tweets.insert(newTweets, at: 0)
self?.tableView.insertSections([0], with: .fade)
}
}
}
This calls a convenience function that is commented as "handler is not necessarily invoked on the main queue". I can't find anywhere that declares which queue it is invoked on, so I assume it is on the main queue?
// convenience "fetch" for when self is a request that returns Tweet(s)
// handler is not necessarily invoked on the main queue
open func fetchTweets(_ handler: #escaping ([Tweet]) -> Void) {
fetch { results in
var tweets = [Tweet]()
var tweetArray: NSArray?
if let dictionary = results as? NSDictionary {
if let tweets = dictionary[TwitterKey.Tweets] as? NSArray {
tweetArray = tweets
} else if let tweet = Tweet(data: dictionary) {
tweets = [tweet]
}
} else if let array = results as? NSArray {
tweetArray = array
}
if tweetArray != nil {
for tweetData in tweetArray! {
if let tweet = Tweet(data: tweetData as? NSDictionary) {
tweets.append(tweet)
}
}
}
handler(tweets)
}
}
I did not write the Twitter framework, and it appears to have been authored by the Stanford instructor.
You ask:
This calls a convenience function that is commented as "handler is not necessarily invoked on the main queue". I can't find anywhere that declares which queue it is invoked on, so I assume it is on the main queue?
No, you cannot assume it is on the main queue. In fact, it sounds like it's explicitly warning you that it isn't. The only time you can be assured it's on the main queue, is if it explicitly says so.
For example, if the underlying framework is using URLSession, it, by default, does not use the main queue for its completion handlers. The init(configuration:​delegate:​delegate​Queue:​) documentation warns us that the queue parameter is as follows:
An operation queue for scheduling the delegate calls and completion handlers. The queue should be a serial queue, in order to ensure the correct ordering of callbacks. If nil, the session creates a serial operation queue for performing all delegate method calls and completion handler calls.
And for a given framework, it may be completely unrelated to URLSession queue behavior. It might also be using its own queues for completion handlers.
Bottom line, if the framework doesn't explicitly assure you that the closure always runs on the main queue, you should never assume it does. So, yes, in the absence of any assurances to this effect, you'd want to dispatch any UI stuff to the main queue and do the appropriate synchronization for any model objects.
You can, if you have code that must run on a particular thread and you want to make sure this is the case, you can add a dispatchPrecondition to test if it's on the main thread. The behavior of this changes between debug builds and release builds, but it's a quick way of quickly testing if it's using the queue you think it is:
dispatchPrecondition(condition: .onQueue(.main))

Is it normal that CPU usage exceeds 100% using dispatch async in Xcode 7

I'm a beginner in swift 2, and I'm trying to make my program blocks while showing only a progress spinner until some operation finishes, I made that code snippet in a button with the action "touch up inside", my problem is that while debugging,Xcode 7 CPU usage jumps to 190 % once I tap my button and keeps high until the flag changes its value, Is it normal that CPU usage jumps like that?, also Is it a good practice to use the following snippet or shud i use sleep or some other mechanism inside my infinite loop?
let queue2 = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
dispatch_async(self.queue2) { () -> Void in
while(flag == true)
{
//wait until flag sets to false from previous func
}
self.dispatch_main({
//continue after the flag became false
})
This is a very economical completion handler
func test(completion:() -> ())
{
// do hard work
completion()
}
let queue2 = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
dispatch_async(queue2) {
test() {
print("completed")
}
}
or with additional dispatch to the main queue to update the UI
let queue2 = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
dispatch_async(queue2) {
test() {
print("completed")
dispatch_async(dispatch_get_main_queue()) {
// update UI
}
}
}
This is totally wrong approach as you are using while loop for waiting. You should use Completion Handler to achieve this kind of stuff.
Completion handlers are callbacks that allow a client to perform some action when a framework method or function completes its task. Often the client uses a completion handler to free state or update the user interface. Several framework methods let you implement completion handlers as blocks (instead of, say, delegation methods or notification handlers).
Refer Apple documentation for more details.
I suppose you have a sort of class which manages these "some operation finishes".
When you finish your operations you can comunicate by completion handler or delegation. In the meanwhile you can disable the user interaction of your UI until the end of these operations.
If you provide more informations about your background operations I can add some snippets of code.

How does threading (asynchronous queues) work in Swift?

ok I am updating this question but left the old one there.
So I have an array that stores the data for different views in a uipageviewcontroller. I need to grab image data in the background. I don't understand how to code this though within an asynchronous task.
Heres the code for the task:
let queue = NSOperationQueue()
queue.addOperationWithBlock() {
// do something in the background
println("background")
self.cards[newIndex].loadImag()
var cardimages = self.cards[newIndex].images
NSOperationQueue.mainQueue().addOperationWithBlock() {
// when done, update your UI and/or model on the main queue
println("update ui")
self.cards[newIndex].images = cardimages
}
}
this is what the .loadImag() function looks like:
func loadImag(){
println("images= \(self.images)")
if self.
location_id != nil && (self.images == nil) {
println("before api call loc_id= \(self.location_id)")
ApiWrapper.getPictures(self.location_id!, completionHandler: self.imagesCallback)
}
}
}
and this is self.imagesCallback code:
private func imagesCallback(cardImagesArray: [CardImage]){
println("images callback id= \(self.location_id)")
self.images = cardImagesArray
}
problem is I am not sure how to put this code inside of the operation cue since the function must have a callback. How can I get the operation queue working so that it updates the self.card array in the uipageviewcontroller?
OLD QUESTION_________________:
So I have this line of code I need to run concurrently in a different thread than the main thread. When I add it to the main queue like so:
var queue = dispatch_get_main_queue()
dispatch_async(queue, {
self.cards[newIndex].loadImage()
})
doing this it works fine but doesn't seem to run concurrently. When I change the queue to concurrent like this:
dispatch_async(DISPATCH_QUEUE_CONCURRENT, {
self.cards[newIndex].loadImage()
})
The app crashes saying "EXC_BAD_ACCESS". What am I doing wrong here? Also when I run the self.cards[newIndex].loadImage() function in a different concurrent thread will this update the values in the main thread?
you shouldn't use GCD unless you want to explicitly use functionality which is only available on GCD. For your case it is more beneficial (and cleaner in code) to use NSOperationQueue. NSOperationQueue uses GCD in the background and is more secure (less ways to mess up)
let queue = NSOperationQueue()
queue.addOperationWithBlock() {
// do something in the background
NSOperationQueue.mainQueue().addOperationWithBlock() {
// when done, update your UI and/or model on the main queue
}
}
You can also read through the Apple Concurrency Programming Guide
The guide is using examples with Objective-C but API is basically the same for Swift.
It also might look strange but with the addOperationWithBlock() I used something called "trailing closure" you can read here about it
Can you paste the whole code so we can see what are you doing?
Below is very basic code snippet. This is basically how concurrency works in Swift.
let qos = Int(QOS_CLASS_USER_INITIATED.value)
dispatch_async(dispatch_get_global_queue(qos, 0), { () -> Void in
// Put your code here to work in the background
dispatch_async(dispatch_get_main_queue(), { () -> Void in
// Put your code here when the process is done and hand over to the main thread.
// Ex. self.cards[newIndex].loadImage()
})
})
You need to use dispatch_get_global_queue . Try something like:
let queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
dispatch_async(queue, {self.cards[newIndex].loadImage()})
dispatch_get_main_queue(), as you were trying, runs on the UI/main thread, which is why you saw the behavior you did.
To answer the second part of your question, If loadImage() is modifying the UI, you don't want to do that from a background thread. It must be done from the main/UI thread. A typical idiom would be, from the main thread do:
let queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
dispatch_async(queue, {
<code to load/prepare images>
dispatch_async(dispatch_get_main_queue(), {
<code to update UI elements>
})
})

Resources