This question already has answers here:
"The operator can’t be unconditionally invoked because the receiver can be null" error after migrating to Dart null-safety
(3 answers)
Closed 12 months ago.
I have migrated my Dart code to NNBD / Null Safety. Some of it looks like this:
class Foo {
String? _a;
void foo() {
if (_a != null) {
_a += 'a';
}
}
}
class Bar {
Bar() {
_a = 'a';
}
String _a;
}
This causes two analysis errors. For _a += 'a';:
An expression whose value can be 'null' must be null-checked before it can be dereferenced.
Try checking that the value isn't 'null' before dereferencing it.
For Bar() {:
Non-nullable instance field '_a' must be initialized.
Try adding an initializer expression, or add a field initializer in this constructor, or mark it 'late'.
In both cases I have already done exactly what the error suggests! What's up with that?
I'm using Dart 2.12.0-133.2.beta (Tue Dec 15).
Edit: I found this page which says:
The analyzer can’t model the flow of your whole application, so it can’t predict the values of global variables or class fields.
But that doesn't make sense to me - there's only one possible flow control path from if (_a != null) to _a += 'a'; in this case - there's no async code and Dart is single-threaded - so it doesn't matter that _a isn't local.
And the error message for Bar() explicitly states the possibility of initialising the field in the constructor.
The problem is that class fields can be overridden even if it is marked as final. The following example illustrates the problem:
class A {
final String? text = 'hello';
String? getText() {
if (text != null) {
return text;
} else {
return 'WAS NULL!';
}
}
}
class B extends A {
bool first = true;
#override
String? get text {
if (first) {
first = false;
return 'world';
} else {
return null;
}
}
}
void main() {
print(A().getText()); // hello
print(B().getText()); // null
}
The B class overrides the text final field so it returns a value the first time it is asked but returns null after this. You cannot write your A class in such a way that you can prevent this form of overrides from being allowed.
So we cannot change the return value of getText from String? to String even if it looks like we checks the text field for null before returning it.
An expression whose value can be 'null' must be null-checked before it can be dereferenced. Try checking that the value isn't 'null' before dereferencing it.
It seems like this really does only work for local variables. This code has no errors:
class Foo {
String? _a;
void foo() {
final a = _a;
if (a != null) {
a += 'a';
_a = a;
}
}
}
It kind of sucks though. My code is now filled with code that just copies class members to local variables and back again. :-/
Non-nullable instance field '_a' must be initialized. Try adding an initializer expression, or add a field initializer in this constructor, or mark it 'late'.
Ah so it turns out a "field initializer" is actually like this:
class Bar {
Bar() : _a = 'a';
String _a;
}
There are few ways to deal with this situation. I've given a detailed answer here so I'm only writing the solutions from it:
Use local variable (Recommended)
void foo() {
var a = this.a; // <-- Local variable
if (a != null) {
a += 'a';
this.a = a;
}
}
Use ??
void foo() {
var a = (this.a ?? '') + 'a';
this.a = a;
}
Use Bang operator (!)
You should only use this solution when you're 100% sure that the variable (a) is not null at the time you're using it.
void foo() {
a = a! + 'a'; // <-- Bang operator
}
To answer your second question:
Non-nullable fields should always be initialized. There are generally three ways of initializing them:
In the declaration:
class Bar {
String a = 'a';
}
In the initializing formal
class Bar {
String a;
Bar({required this.a});
}
In the initializer list:
class Bar {
String a;
Bar(String b) : a = b;
}
You can create your classes in null-safety like this
class JobDoc {
File? docCam1;
File? docCam2;
File? docBarcode;
File? docSignature;
JobDoc({this.docCam1, this.docCam2, this.docBarcode, this.docSignature});
JobDoc.fromJson(Map<String, dynamic> json) {
docCam1 = json['docCam1'] ?? null;
docCam2 = json['docCam2'] ?? null;
docBarcode = json['docBarcode'] ?? null;
docSignature = json['docSignature'] ?? null;
}
}
I have an Enum and a function to create it from a String because i couldn't find a built in way to do it
enum Visibility{VISIBLE,COLLAPSED,HIDDEN}
Visibility visibilityFromString(String value){
return Visibility.values.firstWhere((e)=>
e.toString().split('.')[1].toUpperCase()==value.toUpperCase());
}
//used as
Visibility x = visibilityFromString('COLLAPSED');
but it seems like i have to rewrite this function for every Enum i have, is there a way to write the same function where it takes the Enum type as parameter? i tried to but i figured out that i can't cast to Enum.
//is something with the following signiture actually possible?
dynamic enumFromString(Type enumType,String value){
}
Mirrors aren't always available, but fortunately you don't need them. This is reasonably compact and should do what you want.
enum Fruit { apple, banana }
// Convert to string
String str = Fruit.banana.toString();
// Convert to enum
Fruit f = Fruit.values.firstWhere((e) => e.toString() == 'Fruit.' + str);
assert(f == Fruit.banana); // it worked
Thanks to #frostymarvelous for correcting the answer
As from Dart version 2.15, you can lookup an enum value by name a lot more conveniently, using .values.byName or using .values.asNameMap():
enum Visibility {
visible, collapsed, hidden
}
void main() {
// Both calls output `true`
print(Visibility.values.byName('visible') == Visibility.visible);
print(Visibility.values.asNameMap()['visible'] == Visibility.visible);
}
You can read more about other enum improvements in the official Dart 2.15 announcement blog post.
My solution is identical to Rob C's solution but without string interpolation:
T enumFromString<T>(Iterable<T> values, String value) {
return values.firstWhere((type) => type.toString().split(".").last == value,
orElse: () => null);
}
Null safe example using firstWhereOrNull() from the collection package
static T? enumFromString<T>(Iterable<T> values, String value) {
return values.firstWhereOrNull((type) => type.toString().split(".").last == value);
}
Update:
void main() {
Day monday = Day.values.byName('monday'); // This is all you need
}
enum Day {
monday,
tuesday,
}
Old solution:
Your enum
enum Day {
monday,
tuesday,
}
Add this extension (need a import 'package:flutter/foundation.dart';)
extension EnumEx on String {
Day toEnum() => Day.values.firstWhere((d) => describeEnum(d) == toLowerCase());
}
Usage:
void main() {
String s = 'monday'; // String
Day monday = s.toEnum(); // Converted to enum
}
This is all so complicated I made a simple library that gets the job done:
https://pub.dev/packages/enum_to_string
import 'package:enum_to_string:enum_to_string.dart';
enum TestEnum { testValue1 };
convert(){
String result = EnumToString.parse(TestEnum.testValue1);
//result = 'testValue1'
String resultCamelCase = EnumToString.parseCamelCase(TestEnum.testValue1);
//result = 'Test Value 1'
final result = EnumToString.fromString(TestEnum.values, "testValue1");
// TestEnum.testValue1
}
Update: 2022/02/10
Dart v2.15 has implemented some additional enum methods that may solve your problems.
From here: https://medium.com/dartlang/dart-2-15-7e7a598e508a
Improved enums in the dart:core library
We’ve made a number of convenience additions to the enum APIs in the dart:core library (language issue #1511). You can now get the String value for each enum value using .name:
enum MyEnum {
one, two, three
}
void main() {
print(MyEnum.one.name); // Prints "one".
}
You can also look up an enum value by name:
print(MyEnum.values.byName('two') == MyEnum.two); // Prints "true".
Finally, you can get a map of all name-value pairs:
final map = MyEnum.values.asNameMap();
print(map['three'] == MyEnum.three); // Prints "true".
Using mirrors you could force some behaviour. I had two ideas in mind. Unfortunately Dart does not support typed functions:
import 'dart:mirrors';
enum Visibility {VISIBLE, COLLAPSED, HIDDEN}
class EnumFromString<T> {
T get(String value) {
return (reflectType(T) as ClassMirror).getField(#values).reflectee.firstWhere((e)=>e.toString().split('.')[1].toUpperCase()==value.toUpperCase());
}
}
dynamic enumFromString(String value, t) {
return (reflectType(t) as ClassMirror).getField(#values).reflectee.firstWhere((e)=>e.toString().split('.')[1].toUpperCase()==value.toUpperCase());
}
void main() {
var converter = new EnumFromString<Visibility>();
Visibility x = converter.get('COLLAPSED');
print(x);
Visibility y = enumFromString('HIDDEN', Visibility);
print(y);
}
Outputs:
Visibility.COLLAPSED
Visibility.HIDDEN
Collin Jackson's solution didn't work for me because Dart stringifies enums into EnumName.value rather than just value (for instance, Fruit.apple), and I was trying to convert the string value like apple rather than converting Fruit.apple from the get-go.
With that in mind, this is my solution for the enum from string problem
enum Fruit {apple, banana}
Fruit getFruitFromString(String fruit) {
fruit = 'Fruit.$fruit';
return Fruit.values.firstWhere((f)=> f.toString() == fruit, orElse: () => null);
}
Here is an alternative way to #mbartn's approach using extensions, extending the enum itself instead of String.
Faster, but more tedious
// We're adding a 'from' entry just to avoid having to use Fruit.apple['banana'],
// which looks confusing.
enum Fruit { from, apple, banana }
extension FruitIndex on Fruit {
// Overload the [] getter to get the name of the fruit.
operator[](String key) => (name){
switch(name) {
case 'banana': return Fruit.banana;
case 'apple': return Fruit.apple;
default: throw RangeError("enum Fruit contains no value '$name'");
}
}(key);
}
void main() {
Fruit f = Fruit.from["banana"];
print("$f is ${f.runtimeType}"); // Outputs: Fruit.banana is Fruit
}
Less tedius, but slower
If O(n) performance is acceptable you could also incorporate #Collin Jackson's answer:
// We're adding a 'from' entry just to avoid having to use Fruit.apple['banana']
// which looks confusing.
enum Fruit { from, apple, banana }
extension FruitIndex on Fruit {
// Overload the [] getter to get the name of the fruit.
operator[](String key) =>
Fruit.values.firstWhere((e) => e.toString() == 'Fruit.' + key);
}
void main() {
Fruit f = Fruit.from["banana"];
print("$f is ${f.runtimeType}"); // Outputs: Fruit.banana is Fruit
}
I use this function, I think it's simple and doesn't need any kind of 'hack':
T enumFromString<T>(List<T> values, String value) {
return values.firstWhere((v) => v.toString().split('.')[1] == value,
orElse: () => null);
}
You can use it like this:
enum Test {
value1,
value2,
}
var test = enumFromString(Test.value, 'value2') // Test.value2
With Dart 2.15 we can now do this which is much cleaner
// Convert to string
String fruitName = Fruit.banana.name;
// Convert back to enum
Fruit fruit = Fruit.values.byName(fruitName);
print(fruit); // Fruit.banana
assert(fruit == Fruit.banana);
Since Dart 2.17 you can solve this elegantly with Enhanced Enums.
(see https://stackoverflow.com/a/71412047/15760132 )
Just add a static method to your enum of choice, like this:
enum Example {
example1,
example2,
example3;
static Example? fromName(String name) {
for (Example enumVariant in Example.values) {
if (enumVariant.name == name) return enumVariant;
}
return null;
}
}
Then you can look for the enum like this:
Example? test = Example.fromName("example1");
print(test); // returns Example.example1
I improved Collin Jackson's answer using Dart 2.7 Extension Methods to make it more elegant.
enum Fruit { apple, banana }
extension EnumParser on String {
Fruit toFruit() {
return Fruit.values.firstWhere(
(e) => e.toString().toLowerCase() == 'fruit.$this'.toLowerCase(),
orElse: () => null); //return null if not found
}
}
main() {
Fruit apple = 'apple'.toFruit();
assert(apple == Fruit.apple); //true
}
I had the same problem with building objects from JSON. In JSON values are strings, but I wanted enum to validate if the value is correct. I wrote this helper which works with any enum, not a specified one:
class _EnumHelper {
var cache = {};
dynamic str2enum(e, s) {
var o = {};
if (!cache.containsKey(e)){
for (dynamic i in e) {
o[i.toString().split(".").last] = i;
}
cache[e] = o;
} else {
o = cache[e];
}
return o[s];
}
}
_EnumHelper enumHelper = _EnumHelper();
Usage:
enumHelper.str2enum(Category.values, json['category']);
PS. I did not use types on purpose here. enum is not type in Dart and treating it as one makes things complicated. Class is used solely for caching purposes.
Generalising #CopsOnRoad's solution to work for any enum type,
enum Language { en, ar }
extension StringExtension on String {
T toEnum<T>(List<T> list) => list.firstWhere((d) => d.toString() == this);
}
String langCode = Language.en.toString();
langCode.toEnum(Language.values);
Simplified version:
import 'package:flutter/foundation.dart';
static Fruit? valueOf(String value) {
return Fruit.values.where((e) => describeEnum(e) == value).first;
}
Using the method describeEnum helps you to avoid the usage of the split to get the name of the element.
You can write getEnum like below, getEnum will go through enum values and returns the first enum that is equal to the desired string.
Sample getEnum(String name) => Sample.values.firstWhere(
(v) => v.name.toLowerCase() == name.toLowerCase(),
orElse: () => throw Exception('Enum value not found.'),
);
enum SampleEnum { first, second, third }
UPDATE
also, you can use this:
final SampleEnum nameEnum = SampleEnum.values.byName('second'); // SampleEnum.second
Usage:
void main() {
print(getEnum('first'));
}
In the latest version of Dart, enum can support custom fields and methods. So the most modern way to do this, is to write a custom field for name/label, and a static parser function.
For example:
enum Foo {
a('FIRST'),
b('SECOND'),
c('THIRD'),
unknown('UNKNOWN'); // make sure the last element ends in `;`
final String label; // define a private field
const Foo(this.label); // constructor
static Foo fromString(String label) { // static parser method
return values.firstWhere(
(v) => v.label == label,
orElse: () => Foo.unknown,
);
}
}
Sample Usage:
final foo = Foo.fromString('FIRST'); // will get `Foo.a`
There are a couple of enums packages which allowed me to get just the enum string rather than the type.value string (Apple, not Fruit.Apple).
https://pub.dartlang.org/packages/built_value (this is more up to date)
https://pub.dartlang.org/packages/enums
void main() {
print(MyEnum.nr1.index); // prints 0
print(MyEnum.nr1.toString()); // prints nr1
print(MyEnum.valueOf("nr1").index); // prints 0
print(MyEnum.values[1].toString()) // prints nr2
print(MyEnum.values.last.index) // prints 2
print(MyEnum.values.last.myValue); // prints 15
}
Here is the function that converts given string to enum type:
EnumType enumTypeFromString(String typeString) => EnumType.values
.firstWhere((type) => type.toString() == "EnumType." + typeString);
And here is how you convert given enum type to string:
String enumTypeToString(EnumType type) => type.toString().split(".")[1];
Generalizing on #Pedro Sousa's excellent solution, and using the built-in describeEnum function:
extension StringExtension on String {
T toEnum<T extends Object>(List<T> values) {
return values.singleWhere((v) => this.equalsIgnoreCase(describeEnum(v)));
}
}
Usage:
enum TestEnum { none, test1, test2 }
final testEnum = "test1".toEnum(TestEnum.values);
expect(testEnum, TestEnum.test1);
import 'package:collection/collection.dart';
enum Page {
login,
profile,
contact,
}
Widget page(String key){
Page? link = Page.values.firstWhereOrNull((e) => e.toString().split('.').last == key);
switch (link) {
case Page.login:
return LoginView();
case Page.profile:
return const ProfileView();
case Page.contact:
return const ContactView();
default:
return const Empty();
}
}
#Collin Jackson has a very good answer IMO. I had used a for-in loop to achieve a similar result prior to finding this question. I am definitely switching to using the firstWhere method.
Expanding on his answer this is what I did to deal with removing the type from the value strings:
enum Fruit { apple, banana }
class EnumUtil {
static T fromStringEnum<T>(Iterable<T> values, String stringType) {
return values.firstWhere(
(f)=> "${f.toString().substring(f.toString().indexOf('.')+1)}".toString()
== stringType, orElse: () => null);
}
}
main() {
Fruit result = EnumUtil.fromStringEnum(Fruit.values, "apple");
assert(result == Fruit.apple);
}
Maybe someone will find this useful...
I had the same problem in one of my projects and existing solutions were not very clean and it didn't support advanced features like json serialization/deserialization.
Flutter natively doesn't currently support enum with values, however, I managed to develop a helper package Vnum using class and reflectors implementation to overcome this issue.
Address to the repository:
https://github.com/AmirKamali/Flutter_Vnum
To answer your problem using Vnum, you could implement your code as below:
#VnumDefinition
class Visibility extends Vnum<String> {
static const VISIBLE = const Visibility.define("VISIBLE");
static const COLLAPSED = const Visibility.define("COLLAPSED");
static const HIDDEN = const Visibility.define("HIDDEN");
const Visibility.define(String fromValue) : super.define(fromValue);
factory Visibility(String value) => Vnum.fromValue(value,Visibility);
}
You can use it like :
var visibility = Visibility('COLLAPSED');
print(visibility.value);
There's more documentation in the github repo, hope it helps you out.
When migrating to null-safety, the Iterable.firstWhere method no longer accepts orElse: () => null. Here is the implementation considering the null-safety:
import 'package:collection/collection.dart';
String enumToString(Object o) => o.toString().split('.').last;
T? enumFromString<T>(String key, List<T> values) => values.firstWhereOrNull((v) => key == enumToString(v!));
enum Fruit { orange, apple }
// Waiting for Dart static extensions
// Issue https://github.com/dart-lang/language/issues/723
// So we will be able to Fruit.parse(...)
extension Fruits on Fruit {
static Fruit? parse(String raw) {
return Fruit.values
.firstWhere((v) => v.asString() == raw, orElse: null);
}
String asString() {
return this.toString().split(".").last;
}
}
...
final fruit = Fruits.parse("orange"); // To enum
final value = fruit.asString(); // To string
I think my approach is slightly different, but might be more convenient in some cases. Finally, we have parse and tryParse for enum types:
import 'dart:mirrors';
class Enum {
static T parse<T>(String value) {
final T result = (reflectType(T) as ClassMirror).getField(#values)
.reflectee.firstWhere((v)=>v.toString().split('.').last.toLowerCase() == value.toLowerCase()) as T;
return result;
}
static T tryParse<T>(String value, { T defaultValue }) {
T result = defaultValue;
try {
result = parse<T>(value);
} catch(e){
print(e);
}
return result;
}
}
EDIT: this approach is NOT working in the Flutter applications, by default mirrors are blocked in the Flutter because it causes the generated packages to be very large.
enum in Dart just has too many limitations. The extension method could add methods to the instances, but not static methods.
I really wanted to be able to do something like MyType.parse(myString), so eventually resolved to use manually defined classes instead of enums. With some wiring, it is almost functionally equivalent to enum but could be modified more easily.
class OrderType {
final String string;
const OrderType._(this.string);
static const delivery = OrderType._('delivery');
static const pickup = OrderType._('pickup');
static const values = [delivery, pickup];
static OrderType parse(String value) {
switch (value) {
case 'delivery':
return OrderType.delivery;
break;
case 'pickup':
return OrderType.pickup;
break;
default:
print('got error, invalid order type $value');
return null;
}
}
#override
String toString() {
return 'OrderType.$string';
}
}
// parse from string
final OrderType type = OrderType.parse('delivery');
assert(type == OrderType.delivery);
assert(type.string == 'delivery');
another variant, how it might be solved:
enum MyEnum {
value1,
value2,
}
extension MyEnumX on MyEnum {
String get asString {
switch (this) {
case MyEnum.value1:
return _keyValue1;
case MyEnum.value2:
return _keyValue2;
}
throw Exception("unsupported type");
}
MyEnum fromString(String string) {
switch (string) {
case _keyValue1:
return MyEnum.value1;
case _keyValue2:
return MyEnum.value2;
}
throw Exception("unsupported type");
}
}
const String _keyValue1 = "value1";
const String _keyValue2 = "value2";
void main() {
String string = MyEnum.value1.asString;
MyEnum myEnum = MyEnum.value1.fromString(string);
}
enum HttpMethod { Connect, Delete, Get, Head, Options, Patch, Post, Put, Trace }
HttpMethod httpMethodFromString({#required String httpMethodName}) {
assert(httpMethodName != null);
if (httpMethodName is! String || httpMethodName.isEmpty) {
return null;
}
return HttpMethod.values.firstWhere(
(e) => e.toString() == httpMethodName,
orElse: () => null,
);
}
You can do something like this:
extension LanguagePreferenceForString on String {
LanguagePreferenceEntity toLanguagePrerence() {
switch (this) {
case "english":
return LanguagePreferenceEntity.english;
case "turkish":
return LanguagePreferenceEntity.turkish;
default:
return LanguagePreferenceEntity.english;
}
}
}
The problem I have is that I need to do about 40+ conversions to convert loosely typed info into strongly typed info stored in db, xml file, etc.
I'm plan to tag each type with a tuple i.e. a transformational form like this:
host.name.string:host.dotquad.string
which will offer a conversion from the input to an output form. For example, the name stored in the host field of type string, the input is converted into a dotquad notation of type string and stored back into host field. More complex conversions may need several steps, with each step being accomplished by a method call, hence method chaining.
Examining further the example above, the tuple 'host.name.string' with the field host of name www.domain.com. A DNS lookup is done to covert domain name to IP address. Another method is applied to change the type returned by the DNS lookup into the internal type of dotquad of type string. For this transformation, there is 4 seperate methods called to convert from one tuple into another. Some other conversions may require more steps.
Ideally I would like an small example of how method chains are constructed at runtime. Development time method chaining is relatively trivial, but would require pages and pages of code to cover all possibilites, with 40+ conversions.
One way I thought of doing is, is parsing the tuples at startup, and writing the chains out to an assembly, compiling it, then using reflection to load/access. Its would be really ugly and negate the performance increases i'm hoping to gain.
I'm using Mono, so no C# 4.0
Any help would be appreciated.
Bob.
Here is a quick and dirty solution using LINQ Expressions. You have indicated that you want C# 2.0, this is 3.5, but it does run on Mono 2.6. The method chaining is a bit hacky as i didn't exactly know how your version works, so you might need to tweak the expression code to suit.
The real magic really happens in the Chainer class, which takes a collection of strings, which represent the MethodChain subclass. Take a collection like this:
{
"string",
"string",
"int"
}
This will generate a chain like this:
new StringChain(new StringChain(new IntChain()));
Chainer.CreateChain will return a lambda that calls MethodChain.Execute(). Because Chainer.CreateChain uses a bit of reflection, it's slow, but it only needs to run once for each expression chain. The execution of the lambda is nearly as fast as calling actual code.
Hope you can fit this into your architecture.
public abstract class MethodChain {
private MethodChain[] m_methods;
private object m_Result;
public MethodChain(params MethodChain[] methods) {
m_methods = methods;
}
public MethodChain Execute(object expression) {
if(m_methods != null) {
foreach(var method in m_methods) {
expression = method.Execute(expression).GetResult<object>();
}
}
m_Result = ExecuteInternal(expression);
return this;
}
protected abstract object ExecuteInternal(object expression);
public T GetResult<T>() {
return (T)m_Result;
}
}
public class IntChain : MethodChain {
public IntChain(params MethodChain[] methods)
: base(methods) {
}
protected override object ExecuteInternal(object expression) {
return int.Parse(expression as string);
}
}
public class StringChain : MethodChain {
public StringChain(params MethodChain[] methods):base(methods) {
}
protected override object ExecuteInternal(object expression) {
return (expression as string).Trim();
}
}
public class Chainer {
/// <summary>
/// methods are executed from back to front, so methods[1] will call method[0].Execute before executing itself
/// </summary>
/// <param name="methods"></param>
/// <returns></returns>
public Func<object, MethodChain> CreateChain(IEnumerable<string> methods) {
Expression expr = null;
foreach(var methodName in methods.Reverse()) {
ConstructorInfo cInfo= null;
switch(methodName.ToLower()) {
case "string":
cInfo = typeof(StringChain).GetConstructor(new []{typeof(MethodChain[])});
break;
case "int":
cInfo = typeof(IntChain).GetConstructor(new[] { typeof(MethodChain[]) });
break;
}
if(cInfo == null)
continue;
if(expr != null)
expr = Expression.New(cInfo, Expression.NewArrayInit( typeof(MethodChain), Expression.Convert(expr, typeof(MethodChain))));
else
expr = Expression.New(cInfo, Expression.Constant(null, typeof(MethodChain[])));
}
var objParam = Expression.Parameter(typeof(object));
var methodExpr = Expression.Call(expr, typeof(MethodChain).GetMethod("Execute"), objParam);
Func<object, MethodChain> lambda = Expression.Lambda<Func<object, MethodChain>>(methodExpr, objParam).Compile();
return lambda;
}
[TestMethod]
public void ExprTest() {
Chainer chainer = new Chainer();
var lambda = chainer.CreateChain(new[] { "int", "string" });
var result = lambda(" 34 ").GetResult<int>();
Assert.AreEqual(34, result);
}
}
The command pattern would fit here. What you could do is queue up commands as you need different operations performed on the different data types. Those messages could then all be processed and call the appropriate methods when you're ready later on.
This pattern can be implemented in .NET 2.0.
Do you really need to do this at execution time? Can't you create the combination of operations using code generation?
Let me elaborate:
Assuming you have a class called Conversions which contains all the 40+ convertions you mentioned like this:
//just pseudo code..
class conversions{
string host_name(string input){}
string host_dotquad(string input){}
int type_convert(string input){}
float type_convert(string input){}
float increment_float(float input){}
}
Write a simple console app or something similar which uses reflection to generate code for methods like this:
execute_host_name(string input, Queue<string> conversionQueue)
{
string ouput = conversions.host_name(input);
if(conversionQueue.Count == 0)
return output;
switch(conversionQueue.dequeue())
{
// generate case statements only for methods that take in
// a string as parameter because the host_name method returns a string.
case "host.dotquad": return execute_host_dotquad(output,conversionQueue);
case "type.convert": return execute_type_convert(output, conversionQueue);
default: // exception...
}
}
Wrap all this in a Nice little execute method like this:
object execute(string input, string [] conversions)
{
Queue<string> conversionQueue = //create the queue..
case(conversionQueue.dequeue())
{
case "host.name": return execute_host_name(output,conversionQueue);
case "host.dotquad": return execute_host_dotquad(output,conversionQueue);
case "type.convert": return execute_type_convert(output, conversionQueue);
default: // exception...
}
}
This code generation application need to be executed only when your method signatures changes or when you decide to add new transformations.
Main advantages:
No runtime overhead
Easy to add/delete/change the conversions (code generator will take care of the code changes :) )
What do you think?
I apologize for the long code dump and the fact that it is in Java, rather than C#, but I found your problem quite interesting and I do not have much C# experience. Hopefully you will be able to adapt this solution without difficulty.
One approach to solving your problem is to create a cost for each conversion -- usually this is related to the accuracy of the conversion -- and then perform a search to find the best possible conversion sequence to get from one type to another.
The reason for needing a cost function is to choose among multiple conversion paths. For example, converting from an integer to a string is lossless, but there is no guarantee that every string can be represented by an integer. So, if you had two conversion chains
string -> integer -> float -> decimal
string -> float -> decimal
You would want to select the second one because it will reduce the chance of a conversion failure.
The Java code below implements such a scheme and performs a best-first search to find an optimal conversion sequence. I hope you find it useful. Running the code produces the following output:
> No conversion possible from string to integer
> The optimal conversion sequence from string to host.dotquad.string is:
> string to host.name.string, cost = -1.609438
> host.name.string to host.dns, cost = -1.609438 *PERFECT*
> host.dns to host.dotquad, cost = -1.832581
> host.dotquad to host.dotquad.string, cost = -1.832581 *PERFECT*
Here is the Java code.
/**
* Use best-first search to find an optimal sequence of operations for
* performing a type conversion with maximum fidelity.
*/
import java.util.*;
public class TypeConversion {
/**
* Define a type-conversion interface. It converts between to
* user-defined types and provides a measure of fidelity (accuracy)
* of the conversion.
*/
interface ITypeConverter<T, F> {
public T convert(F from);
public double fidelity();
// Could use reflection instead of handling this explicitly
public String getSourceType();
public String getTargetType();
}
/**
* Create a set of user-defined types.
*/
class HostName {
public String hostName;
public HostName(String hostName) {
this.hostName = hostName;
}
}
class DnsLookup {
public String ipAddress;
public DnsLookup(HostName hostName) {
this.ipAddress = doDNSLookup(hostName);
}
private String doDNSLookup(HostName hostName) {
return "127.0.0.1";
}
}
class DottedQuad {
public int[] quad = new int[4];
public DottedQuad(DnsLookup lookup) {
String[] split = lookup.ipAddress.split(".");
for ( int i = 0; i < 4; i++ )
quad[i] = Integer.parseInt( split[i] );
}
}
/**
* Define a set of conversion operations between the types. We only
* implement a minimal number for brevity, but this could be expanded.
*
* We start by creating some broad classes to differentiate among
* perfect, good and bad conversions.
*/
abstract class PerfectTypeConversion<T, F> implements ITypeConverter<T, F> {
public abstract T convert(F from);
public double fidelity() { return 1.0; }
}
abstract class GoodTypeConversion<T, F> implements ITypeConverter<T, F> {
public abstract T convert(F from);
public double fidelity() { return 0.8; }
}
abstract class BadTypeConversion<T, F> implements ITypeConverter<T, F> {
public abstract T convert(F from);
public double fidelity() { return 0.2; }
}
/**
* Concrete classes that do the actual conversions.
*/
class StringToHostName extends BadTypeConversion<HostName, String> {
public HostName convert(String from) { return new HostName(from); }
public String getSourceType() { return "string"; }
public String getTargetType() { return "host.name.string"; }
}
class HostNameToDnsLookup extends PerfectTypeConversion<DnsLookup, HostName> {
public DnsLookup convert(HostName from) { return new DnsLookup(from); }
public String getSourceType() { return "host.name.string"; }
public String getTargetType() { return "host.dns"; }
}
class DnsLookupToDottedQuad extends GoodTypeConversion<DottedQuad, DnsLookup> {
public DottedQuad convert(DnsLookup from) { return new DottedQuad(from); }
public String getSourceType() { return "host.dns"; }
public String getTargetType() { return "host.dotquad"; }
}
class DottedQuadToString extends PerfectTypeConversion<String, DottedQuad> {
public String convert(DottedQuad f) {
return f.quad[0] + "." + f.quad[1] + "." + f.quad[2] + "." + f.quad[3];
}
public String getSourceType() { return "host.dotquad"; }
public String getTargetType() { return "host.dotquad.string"; }
}
/**
* To find the best conversion sequence, we need to instantiate
* a list of converters.
*/
ITypeConverter<?,?> converters[] =
{
new StringToHostName(),
new HostNameToDnsLookup(),
new DnsLookupToDottedQuad(),
new DottedQuadToString()
};
Map<String, List<ITypeConverter<?,?>>> fromMap =
new HashMap<String, List<ITypeConverter<?,?>>>();
public void buildConversionMap()
{
for ( ITypeConverter<?,?> converter : converters )
{
String type = converter.getSourceType();
if ( !fromMap.containsKey( type )) {
fromMap.put( type, new ArrayList<ITypeConverter<?,?>>());
}
fromMap.get(type).add(converter);
}
}
public class Tuple implements Comparable<Tuple>
{
public String type;
public double cost;
public Tuple parent;
public Tuple(String type, double cost, Tuple parent) {
this.type = type;
this.cost = cost;
this.parent = parent;
}
public int compareTo(Tuple o) {
return Double.compare( cost, o.cost );
}
}
public Tuple findOptimalConversionSequence(String from, String target)
{
PriorityQueue<Tuple> queue = new PriorityQueue<Tuple>();
// Add a dummy start node to the queue
queue.add( new Tuple( from, 0.0, null ));
// Perform the search
while ( !queue.isEmpty() )
{
// Pop the most promising candidate from the list
Tuple tuple = queue.remove();
// If the type matches the target type, return
if ( tuple.type == target )
return tuple;
// If we have reached a dead-end, backtrack
if ( !fromMap.containsKey( tuple.type ))
continue;
// Otherwise get all of the possible conversions to
// perform next and add their costs
for ( ITypeConverter<?,?> converter : fromMap.get( tuple.type ))
{
String type = converter.getTargetType();
double cost = tuple.cost + Math.log( converter.fidelity() );
queue.add( new Tuple( type, cost, tuple ));
}
}
// No solution
return null;
}
public static void convert(String from, String target)
{
TypeConversion tc = new TypeConversion();
// Build a conversion lookup table
tc.buildConversionMap();
// Find the tail of the optimal conversion chain.
Tuple tail = tc.findOptimalConversionSequence( from, target );
if ( tail == null ) {
System.out.println( "No conversion possible from " + from + " to " + target );
return;
}
// Reconstruct the conversion path (skip dummy node)
List<Tuple> solution = new ArrayList<Tuple>();
for ( ; tail.parent != null ; tail = tail.parent )
solution.add( tail );
Collections.reverse( solution );
StringBuilder sb = new StringBuilder();
Formatter formatter = new Formatter(sb);
sb.append( "The optimal conversion sequence from " + from + " to " + target + " is:\n" );
for ( Tuple tuple : solution ) {
formatter.format( "%20s to %20s, cost = %f", tuple.parent.type, tuple.type, tuple.cost );
if ( tuple.cost == tuple.parent.cost )
sb.append( " *PERFECT*");
sb.append( "\n" );
}
System.out.println( sb.toString() );
}
public static void main(String[] args)
{
// Run two tests
convert( "string", "integer" );
convert( "string", "host.dotquad.string" );
}
}